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Superlattice Generated by Moiré Pattern

Twisted Bilayer Graphene

Two layers of lattice with a twist angle generate Moiré pattern
and gives rise to superlattice.

Figure: Pablo Jarillo-Herrero (MIT) at APS March Meeting 2018

Left: Untwisted bilayer graphene retains lattice structure of single layer graphene.
Right: Moiré pattern in Twisted bilayer graphene generates an extra superlattice.
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Structure of Twisted Bilayer Graphene

Low-energy bands become flat when twist angle is close to the
magic angles, which leads to localized profile in position space.
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Figure: Cao Y et al. Nature, 2018, 556(7699): 80.
Left: Superlattice constant A = a/[2sin(6/2)] where a is the graphene lattice constant and 6 the twist angle.

Middle: Normalized local density of states calculated for the flat band showing localized profile.
Right: The band energy of MA-TBG calculated using an ab initio tight-binding method.
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Superlattice Generated by Moiré Pattern

d Created by Interlayer Hybridization

K! K?

w=0 2w < hvgk, 2w = fivgk,

Figure: Cao Y et al. Nature, 2018, 556(7699): 80.

Left: Large twist angle, no interlayer hybridization.
Middle: Large twist angle, hybridization energy w much smaller than the height of crossing.
Right: Small twist angle, hybridization energy comparable to crossing height, band flatterns.
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Superlattice Generated by Moiré Pattern

Highly-tunable Platform for Strong Correlation

e Platforms for Strong Correlated Physics

Cold Atom Optical Magic-angle Graphene Quantum Materials
Lattice Scale Superlattice Scale Lattice Scale
~ 1 micron ~ 10 nm ~ few A
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I New Platform Based on MA-TBG Superlattice

Superlattice Generated by Moiré Pattern

Highly-tunable Platform for Strong Correlation

Magic-angle Twisted Bilayer Graphene is highly tunable:

o Electrostatic control of charge density
o Mechanical control of twist angle

@ Pressure control of interlayer coupling (and hence magic
angle and lattice constant)

o Usual control knobs (voltage, current, temperature,
magnetic field ...)

o All the technologies that come with 2D device
nanofabrication
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@ Correlated Insulator at Half-filling
@ Anomalous Mott-like Insulating Behaviour
o Metal-insulator Behaviour and Magnetic Field Response
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ing Behaviour at Full-filling

When the twist angle is larger than the first magic angle, the
system behaves normally.
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Figure: Cao Y, et al. Physical review letters, 2016, 117(11): 116804.

Left: Dependence of conductance on the charge density. Observe insulating states at full-filling.
Right: Band structure at twist angle 1.8°. No flat bands occur.
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ting Behaviour at Half-filling

Anomalous Mott-like Insulating Behaviour

Metal-insulator Behaviour and Magnetic Field Response

When twist angle approaches the first magic angle, two new
insulating states occur at half-filling.
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Figure: Cao Y et al. Nature, 2018, 556(7699): 80.

Dependence of conductance on the charge density of magic-angle TBG.
Observe abnormal insulating states at half-filling.
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insulator Behaviour in Magic-angle TBG

fott-like Insulating r

sulator Behaviour and Magnetic Field Response

Insulating states only occur at low temperature, which
resembles the correlated Mott insulator.
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Figure: Cao Y et al. Nature, 2018, 556(7699): 80.

Dependence of conductance on inverse temperature.
Observe insulating states below temperature 4K.
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.esponse to Perpendicular Magnetic Field

The insulating state starts conducting after applying a
magnetic field (especially when the field is perpendicular).

Anomalous Mott-like Insulating Behaviour

Metal-insulator Behaviour and Magnetic Field Response
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Figure: Cao Y et al. Nature, 2018, 556(7699): 80.

Dependence of conductance on perpendicular magnetic field on
(Left) p-side and (Right) n-side.
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-nse to Perpendicular Magnetic Field

The electron-electron interaction creates band gap and thus
the insulating states. The magnetic field provides Zeeman
energy which closes the band gap.

Anomalous Mott-like Insulating Behaviour
Metal-insulator Behaviour and Magnetic Field Response
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Figure: Cao Y et al. Nature, 2018, 556(7699): 80.

Schematics of the density of states (DOS) in different scenarios.
CNP, charge neutrality point. The shape is purely illustrative.
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@ Unconventional Superconductivity
o Superconducting States in Magic-angle TBG
o Magnetic Field Response of MA-TBG Superconductivity
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- Glimpse Towards MA TBG Superconductmty

The conductivity near the hole-doping insulating states tends
to increase with decreasing temperature.

0.05

Conductance, G (mS)

0[.3 K

-1.8 -1.3 1.0 1.5

Carrier density, n (10'2 cm)

Figure: Cao Y et al. Nature, 2018, 556(7699): 80.

Temperature-dependent conductance for temperatures from
about 0.3K (black) to 1.7K (orange) near (Left) p-side and (Right) n-side.
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nventional Superconductivity in MA-TBG

Carrier density much lower than conventional superconductor.
Phase diagram resembles that of high- T superconductor.
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Cao Y et al. Nature, 2018, 556(7699): 43. Lee, Nagaosa & Wen. Rev mod phys, 2006, 78(1): 17.

Resistance measured near half-filling densities
versus temperature. Two superconducting
domes are observed next to the half-filling state.

Schematic phase diagram of high- T, superconductors
showing (right) hole doping and (left) electron doping.
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Field Response of Superconductivity
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Figure: Cao Y et al. Nature, 2018, 556(7699): 43.

Above: Resistence-Temperature curve at different densities and magnetic fields.
Below: Temperature—density phase diagrams of magic-angle TBG at different magnetic fields.

Changkai Zhang (LMU Miinchen) Magic-angle Twisted Bilayer Graphene




Twisted Bilayer Graphene Superlattice
Correlated Insulator at Half-filling
Unconventional Superconductivity

Strength of MA-TBG Superconductivity
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Figure: Cao Y et al. Nature, 2018, 556(7699): 43.

Logarithmic plot of critical temperature T, versus Fermi temperature Tg for various superconductors
MA-TBG Superconductivity is among the strongest unconventional superconductivity.
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iummary

o Magic-angle graphene superlattices = System with flat
bands in electronic structure
o Highly-tunable platform for correlated electrons physics:
o Control over carrier density, lattice constants,
temperature, magnetic field, etc.
o Correlated insulating at half-filling
o Superconducting dome (resembling high- T,
superconductivity)

o Magic-angle concept can be more general = Many new
magic-angle 2D material superlattices waiting to explore!

Changkai Zhang (LMU Miinchen) Magic-angle Twisted Bilayer Graphene 21/21



	Twisted Bilayer Graphene Superlattice
	Superlattice Generated by Moiré Pattern
	Highly-tunable Platform for Strong Correlation

	Correlated Insulator at Half-filling
	Anomalous Mott-like Insulating Behaviour
	Metal-insulator Behaviour and Magnetic Field Response

	Unconventional Superconductivity
	Superconducting States in Magic-angle TBG
	Magnetic Field Response of MA-TBG Superconductivity
	Strength of MA-TBG Superconductivity


