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Abstract

Various fascinating phenomena and phases of matter that emerge from the strongly
correlated many-body systems have received much interest in condensed matter
physics. However, direct treatment of a many-body system is close to impossible
due to the exponentially large number of degrees of freedom. Tensor network tech-
niques provide a compelling framework to circumvent the complexity problem. In
this thesis, we employ the infinite Projected Entangled-Pair State (iPEPS) tensor
network to simulate 2-dimensional quantum models defined on a square lattice with
nearest-neighbor and next-nearest neighbor interactions. Compared with other popu-
lar numerical methods such as the Density Matrix Renormalization Group (DMRG)
and Quantum Monte Carlo (QMC) method, iPEPS is especially competitive in its
faithful representation of the entanglement area law and is free from the sign prob-
lem. Therefore, it is particularly suitable for studying fermionic models such as the
Hubbard model where numerous captivating phenomena including high-Tc super-
conductivity may emerge.

A unique feature of our iPEPS algorithms is the capability to exploit symmetries.
The QSpace tensor library is utilized to automatically keep track of the U(1) or
SU(2) symmetry of the tensors. This dramatically reduces the numerical costs and
allows quantum states which conserve different types of symmetries can be studied.

The quantum lattice models studied in this thesis include the Heisenberg model,
the free-fermion model and the Hubbard model. We validate our iPEPS implemen-
tation using well-understood models (e.g. nearest-neighbor Heisenberg model) and
an exactly solvable free-fermion model. Specifically, we investigate the U(1) and
SU(2) symmetric ground state properties of next-nearest neighbor Hubbard model
with next-nearest neighbor hopping amplitude t2 = −0.25 at 1/8 hole doping. Re-
markably, we find that the SU(2) symmetric ground state has a lower energy than the
U(1) symmetric ground state with striped charge and spin orders found in previous
iPEPS calculations.
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Chapter 1
Introduction and Motivation

Various fascinating phenomena and phases of matter may emerge from the interplay
of strong quantum correlations induced by many-body interactions. The high energy
theory of most quantum many-body systems is quantum electrodynamics. However,
direct application of quantum electrodynamics would encounter severe complexity
problems. Simulating even a tiny piece of material is already away beyond the
capability of computation we currently have. Therefore, aiming at an exact solution
by brute-force ab initio method is pragmatically impossible.

Such issues triggered the emergence of condensed matter physics, which at-
tempted to address quantum many-body physics via effective theories. The funda-
mental idea is that collective degrees of freedom could emerge when there exists
a vast amount of interacting particles, and the entire system may be effectively
described by emergent quasi-particles and the interaction between them. Famous
examples include Bloch’s nearly-free electron models and Landau’s Fermi liquid
theory. Nevertheless, most effective theories are highly dependent on the perturba-
tive method, which works only when the interaction is weak enough.

The past few decades have witnessed the discovery of numerous peculiar phenom-
ena which can not be explained by conventional effective theories. Examples include
Mott insulators [1], high-Tc superconductivity [2][3], frustrated quantum magnets
[4], the fractional quantum Hall effect [5] and many more. The common feature
of these intriguing phenomena is that they typically exist in specifically designed
materials where the interaction between particles is strongly enhanced and becomes
comparable or even larger than the kinetic energy. Strong interaction leads to strong
quantum correlation which sources these unconventional effects.

The appearance of strong correlation calls for alternative non-perturbative meth-
ods which can take the full many-body wavefunction into account. This poses new
challenges to both theoretical and numerical analysis. Fortunately, recent researches
on tensor networks, especially infinite Projected Entangled-Pair State (iPEPS) [6–8],
show their highly competitive ability to resolve quantum many-body problems. And
this is the method used in this thesis.

Projected Entangled-Pair State (PEPS) [9] is a type of tensor network state ansatz
specifically designed to simulate the quantum state of 2-dimensional quantum lattice
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models. Utilizing translational invariance, infinite PEPS (iPEPS) [10] can represent
an infinitely extended quantum state through a finite number of tensors. Compared
with other popular numerical methods, iPEPS has the advantage of faithful repre-
sentation of entanglement properties, and circumvents the sign problem. Hence, it
is particularly competitive in simulating fermionic models, which incubate many
strong correlation phenomena. In the next two sections, we discuss important effec-
tive models studied in this thesis and major benefits of iPEPS in these contexts.

1.1 Effective Quantum Lattice Models

The physics inside strongly correlated systems includes complicated interaction
between electrons and nucleons. Thus, additional approximations are needed to bring
down the complexity of computation. A common strategy is to consider effective
Hamiltonians defined on a lattice. The effective Hamiltonian includes considerably
fewer degrees of freedom and should capture essential (low energy) properties of
the original high energy theories. Consequently, by studying effective Hamiltonian
can we still learn a lot about the physics behind.

Numerous different lattice geometries occur in nature. However, many notable
strongly correlated phenomena, e.g. high-Tc superconductivity in cuprates, live on
square lattices. Therefore, this thesis will focus on studying quantum lattice models
defined on a square lattice.

1.1.1 Heisenberg Model

The Heisenberg model [11] describes the interaction between spins in a quantum
lattice systemwhere each lattice site hosts exactly one spin. It is extremely successful
in simulating the magnetic properties of various strongly correlated systems. The
Hamiltonian of Heisenberg model with nearest-neighbor interaction reads

H = J
∑
〈i,j〉

Si · Sj , (1.1)

where J is the coupling constant and Si the spin operator of the electron at site i.
For positive J , the spins in the ground state tends to align anti-ferromagnetically.
The J1-J2 Heisenberg model introduces next-nearest neighbor interaction, i.e.

H = J1
∑
〈i,j〉

Si · Sj + J2
∑
〈〈i,j〉〉

Si · Sj . (1.2)

For positive J2, the additional term favours an anti-ferromagnetic order in next-
nearest neighbors which competes with the first term and causes frustration. There-
fore, depending on the ratio of J1 and J2, the ground state of J1-J2 Heisenberg
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model exhibits various different phases, and rich physics may emerge in the transi-
tion region between the phases. The exact nature of the ground state in this region is
still under active research.

1.1.2 Hubbard Model

TheHubbardmodel [12] is believed to be the effectivemodelwhich captures essential
physics behind high-Tc superconductors. Hubbard models typically consist of a
kinetic term which describes the hopping of electrons from one site to another,
and an on-site interaction term. The Hamiltonian of a Hubbard model with nearest-
neighbor hopping can be written as

H = −t
∑
〈i,j〉,σ

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓, (1.3)

where ciσ and c†iσ are annihilation and creation operator of electron with spin
σ ∈ {↑, ↓} at site i, and niσ the number of electrons operator with spin σ ∈ {↑, ↓} at
site i; t is the hopping amplitude and U mimics the Coulomb repulsion of electrons
at the same site. For small U , the ground state shows a metallic behavior at half-
filling; for sufficiently large U , the large on-site interaction would suppress the
electron mobility at low temperatures, resulting in a Mott insulating state [13].
Superconducting d-wave order and stripe states are observed at finite hole doping.

The Hubbard model can also accommodate next-nearest neighbor hopping with
a different hopping amplitude, i.e.

H =− t1
∑
〈i,j〉,σ

(c†iσcjσ + c†jσciσ)

− t2
∑
〈〈i,j〉〉,σ

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓.
(1.4)

Solving the Hubbard model is analytically not yet possible and numerically chal-
lenging, as the ground state may exhibit abundant combinations of charge and spin
orders depending on the relative value of t1, t2, U and doping, and different candi-
dates of the ground state are energetically very close. Therefore, accurate numerical
simulation is requied for determination of the authentic ground state.

1.2 Common Numerical Methods

Themost straight-forwardway of obtaining the ground statewavefunction of strongly
correlated systems is the exact diagonalization method [14]. However, the dimen-



4 Introduction and Motivation

sion of the full Hilbert space grows exponentially with the system size. Thus, the
computational expenses required quickly go beyond our current availability.

Another important and powerful numerical method for dealing with strongly
correlated systems is the quantum Monte Carlo method [15–17]. The common idea
of quantumMonte Carlo methods is to utilize stochastic simulation, e.g. by sampling
the partition function. QuantumMonte Carlo algorithms are usually highly efficient,
so it is feasible to study somevery large systemswith hundreds of sites at a polynomial
cost. However, quantum Monte Carlo techniques suffer from the well-known sign
problem [18], which poses great barriers to the simulation of fermionic systems and
many frustrated spin systems.

One of the strategies to circumvent the aforementioned limitation is offered by
tensor network techniques. Tensor network (TN) methods encode the many-body
wavefunction in the form of interconnected tensors. Each lattice site is equipped
with a tensor with one open physical index representing local state space, and several
virtual indices connected with neighboring sites representing entanglement.

Early examples of tensor network methods are numerical renormalization group
(NRG) [19–21] for quantum impurity model, and density matrix renormalization
group (DMRG) [22][23] for treating 1-dimensional systems in the form later devel-
oped as matrix product state (MPS). For 2-dimensional models, one can also use a
1-dimensional chain to traverse through the entire lattice. However, such a strategy
would not be able to comply with the area law of entanglement entropy.

The Projected Entangled-Pair State (PEPS) ansatz [9][6][7] is a 2-dimensional
generalization ofMPS ansatz. PEPS simulation is numerically more demanding than
DMRG.Nonetheless, PEPSpossesses amuch better encoding of entanglement, and is
thus physically more meaningful. Other superiority of PEPS includes immunization
of sign problem, non-perturbative nature and the capability to treat large-size (or
even infinite-size) systems. These features make PEPS method a compelling choice
in simulating 2-dimensional fermionic systems.

1.3 Goals and Objectives

In this thesis, wewill develop computer programs for iPEPSmethods to studyHeisen-
berg model and Hubbard model with nearest-neighbor and next-nearest neighbor in-
teractions. The nearest-neighbor models and an exactly solvable free-fermion model
will be utilized for sanity checks. For next-nearest neighbor Heisenberg model, we
will exemplify different phases with representative values of J2/J1. For next-nearest
neighbor Hubbard model, we will investigate the U(1) and SU(2) symmetric ground
state properties near 1/8 doping where various spin and charge orders may appear
and the true ground state is still under controversy.



Chapter 2
Tensor Network Techniques

Tensor network techniques include a series of numerical methods for many-body
physics which encode the quantum state into a network of tensors. The major ten-
sor network method employed in this thesis is the infinite Projected Entangled-Pair
State (iPEPS) method. Section 2.1 introduces a graphical notation for tensors which
dramatically simplifies working with them. Section 2.2 motivates the usage of tensor
networks in 1-dimensional latticemodels by introducingMatrix Product State (MPS)
methods. Section 2.3 and section 2.4 illustrate how fermionic statistics is imple-
mented and how one keeps track of the symmetries in a tensor network respectively.
Section 2.5 introduces the PEPSmethod tackling 2-dimensional models, followed by
section 2.6 which elaborates how one implements iPEPS via Corner Transfer Matrix
(CTM) scheme. Then, section 2.7 presents the simple update scheme (for models
with both nearest-neighbor and next-nearest neighbor interactions) and the full up-
date scheme (for models with nearest-neighbor interaction only), the core algorithms
to obtain the ground state of given models. Finally, section 2.8 demonstrates how
observables can be measured in the iPEPS formalism.

2.1 Graphical Notation

This section explains the graphical notation of tensors and their contraction operation.
Tensor network methods typically involve complicated manipulations of high-rank
tensors. Presenting all these tensor operations in terms of traditional mathematical
formulas would lead to lengthy expressions with numerous tensor indices. Moreover,
the significance of many 2-dimensional tensor expressions would be obscure when
writing them out line by line. Therefore, analogous to the Feynman diagrams which
have been widely used in perturbation theories, diagrammatic expressions for tensor
networks are invoked to overcome the inconvenience of formulas.

Tensor network diagrams usually consist of circles (or rectangles, etc.) and lines.
Each circle represents a tensor and the lines that connect with the circle represent the
indices of the tensor. Figure 2.1 shows three examples of diagrammatic expressions
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of rank-1 tensor (vector), rank-2 tensor (matrix) and rank-3 tensor. The azimuth of
lines is usually irrelevant, while the order of lines can be crucial in fermionic cases.

(a) Vector (b) Matrix (c) Tensor

Fig. 2.1 Diagrammatic expression of vector, matrix and rank-3 tensor. Each cir-
cle represents a tensor. Each external line (usually called leg or bond) represents
an index of the tensor.

The contraction of tensors is diagrammatically represented by joining lines corre-
sponding to the same index. As shown in Figure 2.2, the internal line corresponding
to index β indicates a contraction. Conventionally, open lines are called legs and
connected lines are called bonds.

Fig. 2.2 Diagrammatic expression of a contraction operation on index β. Con-
traction is represented by a connected line. Indices are labelled for clarity, but
can be ommited in practice.

A tensor network may involve numerous contraction operations. And the order
of performing the contractions does not influence the results obtained. However,
it does affect the computational complexity of the algorithm. The computational
complexity can be directly read off from the tensor diagrams. For instance, the
computation of the contraction in Figure 2.2 requires O(D[α]D[σ]D[β]D[ρ]D[γ])
operations, where D[i] is the dimension of index i. In general, the computational
complexity is the product of the dimension of all the lines appearing in the diagram.
However, depending on the topology of the diagram, the actual numerical cost may
depend on the order of in which contractions are computed.

2.2 Matrix Product States

Before heading towards 2-dimensional tensor networks, let us start first with the 1-
dimensional case. There is no intention for a detailed and self-contained discussion
of 1-dimensional models and algorithms here. However, many fundamental concepts
that are constantly encountered in various tensor network formalisms become much
more intuitive in the simple 1-dimensional situation. Therefore, it would be beneficial
to elaborate on these basic components and then generalize to higher dimensions.
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Consider a quantum lattice model defined on a 1-dimensional chain of lengthN .
Each lattice site hosts a local state space of dimension d. Then, any quantum state
can be expanded using the basis of Fock space |σ1〉|σ2〉 · · · |σN 〉 as

|ψ〉 =
∑

σ1,σ2··· ,σN

Ψσ1σ2···σN |σ1〉|σ2〉 · · · |σN 〉. (2.1)

The coefficientΨσ1σ2···σN can be regarded as a rank-N tensor.And the tensor network
techniques are exactly the methods used to construct and analyze this tensor. The
idea of Matrix Product State (MPS) [23–25] is to decompose this large tensor into
the product of a set of rank-3 tensors as

Ψσ1σ2···σN =
∑

α1,α2,··· ,αN

Aσ1
α1
Aσ2
α1α2

Aσ3
α2α3

· · ·AσN−1
αN−2αN−1

AσN
αN−1

(2.2)

Such a long mathematical formula is not convenient and informative enough. There-
fore, the diagrammatic expression introduced in the last section is invoked. In terms
of diagrams, the above formula can be rewritten as shown in Figure 2.3 [25].

Fig. 2.3 Matrix Product State (MPS) representation of many-body wavefunc-
tion. Each component of the tensor Ψ is acquired by a series of matrix products.

The motivation of the MPS representation is straight-forward. The first tensor
Aσ1
α1

is simply a unitary transform that changes the basis of the local space associated
to the first site. The second tensorAσ2

α1α2
takes the local state of the first site (depicted

by index α1) and the local state of the second site (physical index σ2), and combines
them into a two-body state labelled by virtual bond index α2. Such a procedure is
repeated until all the N sites are included.

Fig. 2.4 Singular Value Decomposition (SVD) of tensor A, where U†U = 1,
V †V = 1 and S is an non-negative diagonal matrix. Truncation may be
performed via keeping only the largest singular values.

This construction generates an MPS form of the wavefunction accurately without
any approximation. And it is apparent that the dimension of bond αi is di, which still
grows exponentially. Thus, extra measures are needed to reduce the bond dimension.

The technique that we are going to adopt is the Singular Value Decomposition
(SVD) that has already been widely used in the field of data compression. The
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singular values procured from the SVD act as a perfect measure of the contribution
of each spectrum in reconstructing original information. Figure 2.4 shows the SVD
of the tensor A. Next, one truncates matrix S by keeping only the largestD singular
values. Then, use the truncated version of U as the new version of A and contract

(a) Left-normalized (b) Right-normalized

Fig. 2.5 Left-normalized and right-normalized tensor. 1 labels the identity
matrix. Both can be generated through SVD.

S and V † into the followed up tensor. The SVD can subsequently be performed from
left to right (right to left) and produce left-normalized (right-normalized) tensors
(defined as Figure 2.5) with bond dimensions no larger than D.

The Hermitian conjugate of the tensor Ψ (considered as a linear operator) can be
immediately obtained from the MPS form. Diagrammatically, one simply needs to
perform a vertical flip of the diagram in Figure 2.3 [25].

Fig. 2.6 MPS representation of the Hermitian conjugate of tensor Ψ . Diagram-
matically, this is simply the vertical flip of Figure 2.3.

The computation of observables can also be made explicit by using the MPS
representation of ket and bra. For example, if we have local observables Oi and Oj
located at site i and j respectively, the correlation 〈ψ|OiOj |ψ〉 can be computed
using the diagram shown in Figure 2.7.

Fig. 2.7 Observable measurement using MPS representation. Oi and Oj are
two local observables located at site i and j respectively.

The singular values computed from the SVD of tensor A have vital physical
significance. To understand this, we need the Lambda-Gamma form of the MPS
as shown in Figure 2.8. In Lambda-Gamma form [26][27], a singular value matrix
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Λ is inserted between any two rank-3 Γ tensors. By absorbing Λ matrix into a
neighboring Γ tensor, e.g. defining Ai ≡ Λi−1Γi (left-normalized) or Bi ≡ ΓiΛi
(right-normalized), one retrieves the original form of the MPS.

Fig. 2.8 Lambda-Gamma form of MPS. Singular value matrices Λi explicitly
enters the tensor network. Each pair of Λ and Γ constitute a tensor.

Let us now investigate the physical significance of the singular values. As shown
in Figure 2.9, an arbitrary Λi divides the entire tensor network into left and right
parts. For specific α (or β), the left partΞL (or the right partΞR) defines a quantum
state |α〉L (or |β〉R) for the left (or right) subsystem.

Fig. 2.9 Any Λi divides the MPS into two parts. Both parts define a quantum
state of the corresponding subsystem. Thus, the singular values become Schmidt
coefficients encoding the entanglement.

Notice that the singular value matrix Λi is diagonal. Consequently, the total
many-body state can be written in the form [28]

|ψ〉 =
∑
α

Λααi |α〉L|α〉R. (2.3)

Thus, we can identify the singular values as the Schmidt coefficients which encode
the entanglement between the left and right subsystems.

Fig. 2.10 All tensors in ΞL (ΞR) are left-normalized (right-normalized).
Hence, one can replace ΞL (ΞR) by the neighboring singular value matrix.

Another crucial application of the Λ matrices emerges from the information
carried by the singular values. It is clear that the Γ and Λ tensors in ΞL can pair up
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in a way to make all the tensors left-normalized. This gives Ξ†LΞL = 1. Similarly,
there is ΞRΞ†R = 1. Therefore, the singular value matrix Λ already carries enough
information about ΞL or ΞR to enable observables to be computed [25], as shown
in Figure 2.10.

The above property is especially proficient when studying infinite-size tensor
networks. The singular value matrix Λ can effectively replace Ξ regardless of how
many tensorsΞ includes. Thus, one can simply treat Λ as some environment instead
of using a possibly infinite-size Ξ . Such a technique is the foundation of the simple
update algorithm for the ground state search discussed in the later section.

2.3 Fermionic Statistics

In the previous discussions, we implicitly suggested that the tensor network abides by
bosonic statistics. However, much attention and efforts focus on the strongly corre-
lated system that includes fermions. Fermionic latticemodels such as Hubbardmodel
are particularly challenging partly because the most effective competitor, quantum
Monte Carlo method, suffers from sign problems. Therefore, much expectation is
placed upon tensor network techniques.

Parity Conservation

Most fermionic systems preserve the parity of the number of fermions, i.e. whether
the system has an odd or even number of fermions. This Z2 parity symmetry poses
restrictions to the tensors in the tensor network [6][29]. Since the tensors simply
represent quantum states, they should also preserve parity symmetry p, i.e.

Aσαβ = 0, if p(α)p(β)p(σ) = −1. (2.4)

where p(α) ∈ {−1, 1} labels the parity of the state corresponding to indexα; p = −1
indicates an odd number of fermions and p = 1 an even number of fermions. One
can use the symmetry tracking technique introduced in section 2.4 to record the
propagation of parities during computation.

For convenience, we require all the tensors entering the algorithm to comply with
the above parity rule. Some operators, such as fermion creation c† and annihilation
c operator, do not naturally support the parity conservation. Extra settings required
in this case will be discussed later in this section.

Fermionic Swap Gate

The parity symmetry alone does not capture the fermionic statistics. However, the
parity of the quantum state itself is crucial information for the determination of
fermionic signs. Quantum states with an odd number of fermions can be created with
an odd number of creation operators. Therefore, switching the order of two indices
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with odd parity generates a minus sign. This procedure can be implemented by the
so-called fermionic swap gate [6][29] defined as Figure 2.11. Each line crossing in
the fermionic tensor network diagram should thus be replaced by the swap gate.

Fig. 2.11 Definition and diagrammatic expression of the fermionic swap gate,
where SWAP(α, β) = −1 if p(α) = p(β) = −1 and SWAP(α, β) = 1
otherwise. A swap gate is needed for every line crossing in the tensor network.

As shown in Figure 2.11, a swap gate accounts for the fermionic statistics by
adding an extra minus sign when the crossed lines both carry odd fermionic parities.
For complicated tensor network diagrams, especially 2-dimensional diagrams, there
may be numerous unavoidable line crossings. However, adding swap gates does not
alter the apparent computational complexity, as each application of the swap gate
can be absorbed into one single tensor. Consequently, one only needs to add the swap
gate at appropriate spots in the algorithm.

Fermionic Operator

It has been stated earlier that we restrict the tensors entering fermionic tensor network
algorithms to be parity-preserving. This is easily satisfied by tensors which describe
quantum states. However, some vital operators such as the creation and annihilation
operators violate the parity rule. Therefore, we use a trick that adds an auxiliary leg
which takes only one value and odd parity [6][29], as shown in Figure 2.12.

Fig. 2.12 Tensors representing parity changing fermionic operators need an
auxiliary leg, with odd parity by definition, in order to maintain the parity
conservation requirement.

The creation c† and annihilation c operator change the parity by adding or remov-
ing one fermion. Thus, the parity of σ and σ′ are opposite to each other. By attaching
one extra index δ with odd parity, one retrieves the parity conservation

p(σ)p(σ′)p(δ) = −p(δ) = 1. (2.5)

We conclude this section by mentioning another possible subtlety lying in the
expansion of two-site operators with respect to some two-site basis. The Hermitian
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conjugate of basis |σiσj〉 is 〈σjσi| (notice the order of σi and σj has been switched),
where σi ∈ {0, 1} labels the occupation number of site i and similarly for σj .
Hence, one is advised to pay extra attention to the minus sign that may occur in some
components of two-site operators.

2.4 Symmetry Tracking

Symmetry is one of the most essential concepts in physics. In quantum physics,
symmetry-generated quantum numbers are the only indicators for distinct quantum
states. Moreover, quantum phase transitions are often accompanied by a switch of
symmetries.

In the context of tensor networks, tracing the symmetries within the network may
have profound effects. The existence of symmetry implies that the tensors may be
highly sparse, and one can make use of symmetries for compression which could
lead to huge numerical advances. Besides, by turning on different symmetries, one
can study possible symmetry-breaking in specific models of interest.

In this thesis, the work of symmetry tracking is handed over to the QSpace
library [30]. Here, we only discuss the basic mechanism of symmetry book-keeping.
For more technical details, it is advised to consult the introductory paper [29] or
documentation of QSpace library [30].

Symmetry and Group

Strongly correlated systems usually incorporate abundant different symmetries.
Mathematically, symmetries can be handled using group theory. In the discussion
of fermionic tensor networks 2.3, we have exploited the parity Z2 symmetry. U(1)
symmetry is another commonly encountered symmetry which accounts for e.g. the
conservation of charges. Many spinful models preserve SU(2) symmetry which con-
serves the total spin of the system. Albeit more complex symmetries are also possible
in some strongly correlated systems, they are not used in this thesis nonetheless.

A direct consequence of symmetry is the commutation of the HamiltonianH and
the symmetry group generators Ti, i.e. [H, Ti] = 0. This indicates that the Hamil-
tonian can be written in a block-diagonal form containing non-zero elements only
within the blocks (named symmetry sectors). Therefore, one attains great computa-
tional benefits by getting rid of unnecessary zero elements. The more intricate the
system is, the more evident the numerical benefits will be.

Abelian Symmetry

Abelian symmetry is a simple symmetry where any two elements of the symme-
try group commute with each other. Quantum states |ql〉 which preserve Abelian
symmetry can be identified using two numbers q and l, where q designates the
symmetry quantum number and l further resolves different states with the same
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quantum number. Take the U(1) electric charge symmetry in a two-electron system
for example. In this case, q labels the total charge of the system. There are three
possibilities: q = 0,−1,−2. The first and third states are generated uniquely by
|0〉|0〉 and | −1〉| −1〉 respectively. While the second state may be either | −1〉|0〉 or
|0〉| −1〉. Therefore, the additional l is needed to distinguish these two states.

The building blocks of tensor network description of many-body states are the
tensors which combine some states to give new ones. The rank-3 tensor in the MPS
formalism is a direct example. When turning on the Abelian symmetry, this tensor
can be rewritten as

|q′′n〉 =
∑
ql,q′m

[Aqq′q′′ ]
l
mn|ql〉|q′m〉, (2.6)

where quantum numbers enter as additional labels. Numerically, this means more
book-keeping efforts. However, quantum numbers must obey selection rules in the
symmetric case, e.g. q′′ = q + q′ in U(1) symmetry. This leads to considerable
numerical speed-up and reduced memory costs.

Non-Abelian Symmetry: SU(2)

In this thesis, we will extensively exploit non-Abelian SU(2) symmetry. One needs
two quantum numbers q and qz to designate a distinctive SU(2) representation.
However, an additional label l is also needed to select a unique quantum state. Take
the SU(2) spin symmetry in a three-spin system for example. There are two states
withS = 1/2, Sz = 1/2, i.e. |↑〉 ( |↑↓〉−|↑↓〉 ) /

√
2 and |↓〉|↑↑〉. ByWigner-Eckardt

theorem, the tensor has the form

|q′′m, q′′z 〉 =
∑

qlqz,qm,q′z

[Aqq′q′′ ]
l
mn · C

qz
q′zq
′′
z
|qlqz〉|q′mq′z〉, (2.7)

where Cqzq′zq′′z = 〈qq′; qzq′z|q′′; q′′z 〉 [30] is the Clebsch-Gordan coefficients which
encode the selection rules. Analogously, the operators can also be expanded using
Wigner-Eckardt theorem as [30]

〈q′l′; q′z|Ô
q̃
q̃z
|ql; qz〉 = (O

[q̃]
qq′)

[1]
ll′ · C

[q̃z ]
qzq′z

(2.8)

Notice that for a specific symmetry group, the Clebsch-Gordan coefficients are
definite and only need to be computed once. This allows further compression of
non-zero data blocks and reduction of numerical costs, despite an increase of book-
keeping efforts.

Diagrammatic Feature

The tensors which preserve certain symmetries have an extra diagrammatic feature.
As depicted in Figure 2.13, each leg of the tensor is accompanied by an arrow, and the
flow of quantum numbers from incoming legs (bra) and outgoing ones (ket) should
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be conserved in the sense of Eqs. (2.6), (2.7) and (2.8). There is no objective choice
of the convention of arrows. Nevertheless, one has to maintain the same convention
throughout the computation.

(a) Tensor (b) Symmetric Matrix Product State

Fig. 2.13 Diagrammatic expression of the tensor and symmetric Matrix Prod-
uct State. Arrows are equipped to indicate the flow of quantum numbers. An
additional leg is attached to tackle possible multiplet states.

As the many-body state is constructed via a symmetric tensor network, it must
preserve some global quantum numbers of the corresponding symmetry group. For
finite-size tensor networks, one can always target various states with different global
quantum numbers by attaching an additional leg to any tensors. However, this is
not possible for infinite-size tensor networks. Therefore, infinite tensor networks are
always constrained to the singlet sector.

2.5 Projected Entangled-Pair States

The Projected Entangled-Pair State (PEPS) [9] tensor network is a generalization of
the Matrix Product State (MPS) ansatz to higher dimensions. In this thesis, we only
study PEPS in two dimensions where many strongly correlated phenomena emerge.
Like its 1-dimensional counterpart, PEPS consists of a network of tensors. However,
as now each site is accompanied by four neighboring sites, the tensors need four
virtual bonds, as shown in Figure 2.14.

(a) Tensor (b) Hermitian Conjugate

Fig. 2.14 The 2-dimensional tensor which constitutes the PEPS tensor network
and the Hermitian conjugate of the tensor. The direction of arrows are flipped
after complex conjugation.

We adopt the convention that the top and right legs have outgoing arrows, while the
bottom and left legs have incoming arrows. Physical legs, aligned vertically here,
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have incoming arrows. The Hermitian conjugate is obtained by turning the tensor
diagram upside down and flipping the direction of arrows of all the legs.

Finite-size PEPS [31] consisting of a finite number of tensors simulates the
quantum state on a finite-size lattice. Figure 2.15 shows a PEPS describing a 3×3
cluster. Boundary tensors may have fewer legs due to a lack of neighboring sites.

In two dimensions, one faces the subtlety of arranging the physical legs of PEPS.
Figure 2.15 shows one possible arrangement, but other conventions are in general
allowed. However, different conventions may lead to different placements of swap
gates, which enforces one to adopt the same convention throughout the computation.

Fig. 2.15 Finite-size PEPS living on a 3×3 cluster. The arrangement order
of the local indices is in general irrelevant, as long as the same convention is
referred throughout the computation.

The construction that every neighboring pair of local sites has a connecting vir-
tual bond has profound significance. Compared with competing algorithms such as
Density Matrix Renormalization Group (DMRG) which traverses the 2-dimensional
lattice via a 1-dimensional tensor network [32], PEPS is able to maintain the entan-
glement properties required by a 2-dimensional system. Concretely, for a subregion
of size L×L, the entanglement entropy of PEPS tensor network is bounded by [28]

S = O(L logD), (2.9)

whereD is the bond dimension of the PEPS tensors. This complies with the area law
of entanglement entropy [28] which is satisfied by most strongly correlated systems.
However, issues might still occur near quantum criticality where extra logarithmic
correction term like O(L logL) can emerge.

The bra 〈ψ| is required either in computing the norm 〈ψ|ψ〉 or the expectation
value of some observable 〈ψ|O|ψ〉. Diagrammatically, 〈ψ| is represented by a di-
agram which is simply the horizontal mirror image of Figure 2.15. However, this
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procedure leads to awkward technical implementations due to the complexity in the
arrangement of physical sites and the consequent irregular placement of swap gates.

Fig. 2.16 Definition of conjugate tensor and double-layer composite tensor.
Double-layer composite tensors will be represented by calligraphy letters.

An alternative way [6][29] is depicted in Figure 2.16. We first construct the
conjugate tensor W by distorting two legs of M†, such that all the four virtual
bonds of W lie in parallel with the tensor M . Next, contract the physical index of
corresponding M and W , and reshape the parallel legs of M and W to get the
double-layer composite tensor labeled by calligraphy letterM.

Fig. 2.17 The norm of the many-body wavefunction is now represented by a
tensor network consisting of only the composite tensors without any explicit
fermionic swap gates.

Using composite tensorsM, the norm of the many-body wavefunction 〈ψ|ψ〉 can
be rephrased as Figure 2.17. The procedure in Figure 2.16 is universal and include
all the fermionic swap gates into the composite tensor. Thus, one can iterate the same
procedure for all sites to produce a tensor network in Figure 2.17 with no explicit
swap gates.
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Many strongly correlated systems lie on an infinite-size lattice with translational
symmetry. Correspondingly, one can exploit the translational invariance to define
the infinite PEPS (iPEPS) [10][6] tensor network.

Fig. 2.18 The iPEPS tensor network with a 2×2 supercell, i.e. the entire infinite
tensor network is created by infinite copies of the supercell.

The iPEPS tensor network is created by an infinite number of translated copies
of some supercell [8]. The supercell serves as a “unit cell” of the corresponding
infinite tensor network. Figure 2.18 shows a 2×2 supercell of an iPEPS. The ground
state of some strongly correlated systems may spontaneously break the translational
symmetries. In this case, one may demand a larger size of the supercell.

Fig. 2.19 The Lambda-Gamma form of the iPEPS tensor network. A singular
valuematrixλ is inserted into each virtual bondwhich encodes the entanglement
between the two sites.

Similar to the MPS, one can define the Lambda-Gamma form of the iPEPS
by introducing a singular value matrix for each virtual bond. These singular value
matrices encode the entanglement between the two sides of the matrix. As seen in
section 2.2, the singular value matrix can be regarded as some environment which
carries the information of some surrounding region. This is the foundation of the
simple update algorithm for ground state search and will be discussed further in
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section 2.7.1. However, unlike the MPS, 2-dimensional iPEPS does not possess
a canonical form [25] (e.g. left-normalized or right-normalized tensor network).
Hence, alternative methods are required to obtain accurate results.

2.6 Corner Transfer Matrix

The iPEPS tensor network includes an infinite number of tensors which is pragmat-
ically impossible to process. Thus, one has to find a way to represent some infinite
subregion by a finite number of tensors. In one dimension, the singular values do the
work perfectly. Nonetheless, the same strategy fails in two dimensions owing to the
absence of a well-defined canonical form.

The Corner Transfer Matrix (CTM) scheme [6][33–35] is a powerful method
to tackle the problem. The CTM scheme employs four corner matrices C and four
transfer matrices (tensors, rigorously speaking) T for each composite tensor M.
These eight tensors represent the infinitely extended tensor network surrounding the
composite tensor.

Fig. 2.20 The Corner Transfer Matrix scheme generates four corner matrices
and four transfermatriceswhich represent the infinitely extended tensor network
surrounding the composite tensor.

In order to accurately simulate the infinite-size environment, one typically needs
an environmental bond (the bonds connecting corner and transfer matrix) dimension
χ that is much larger than the bond dimension of the composite tensor D2. This
is diagrammatically indicated by the different thicknesses of lines. Besides, as each
composite tensor demands a set of corner and transfer matrices, the total number of
tensors required is dependent on the size of the supercell. For instance, an iPEPS
with 2×2 supercell needs 16 corner matrices and 16 transfer matrices in total.

The CTM scheme produces the corner and transfer matrices by a series of coarse-
graining steps in all directions. As shown in Figure 2.21, the coarse-graining moves
consist of two steps: first, contract the existing transfer matrix with the nearest
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composite tensor, which gives a new transfer matrix with a larger environment
bond dimension χD2; then perform renormalization described below to reduce the
environment bond dimension back to χ. Notice that the transfer matrix generated
belongs to a different site, e.g. T L

j,i+1 instead of T L
j,i in Figure 2.21. This procedure

is iterated until the spectrums of transfer matrices reach convergence.

Fig. 2.21 The renormalization of transfer matrix. (a) The initial setup; (b)
Contract the transfer matrix with the nearest composite tensor to get the new
transfer matrix; (c) The new transfer matrix has a larger environment bond
dimension χD2; (d) Perform renormalization to reduce the environment bond
dimension back to χ.

Fig. 2.22 The renormalization of corner matrix. (a) The initial setup; (b) Con-
tract the corner matrix with the nearest transfer matrix to get the new corner
matrix; (c) The new corner matrix has a larger environment bond dimension
χ2; (d) Perform renormalization to reduce the environment bond dimension
back to χ.

The coarse-graining of corner matrices can be carried out in a similar manner. As
shown in Figure 2.22, the corner matrix is contracted with the nearest transfer matrix,
before renormalization is conducted to reduce the environment bond dimension.
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However, there is one extra complication: there are two different directions for
coarse-graining. Both directions are required to obtain convergence.

Before the renormalization procedure, an initialization is needed first as a starting
point. In principle, one could use any random tensors as initialization. Nonetheless,
this usually costs much more renormalization steps for convergence. A much better
strategy is demonstrated in Figure 2.23 which makes use of the tensor and its
conjugate.

Fig. 2.23 The corner and transfer matrices can be initialized using the tensor
and its conjugate. This strategy leads to a faster convergence property than
random initialization.

We are still left with one final ingredient — the CTM Renormalization Group
scheme. In each coarse-graining step, one needs an RG to truncate the increasing
environment bond dimension. Next, we elaborate on how to achieve a relatively
optimal and numerically stable truncation.

Fig. 2.24 Effective tensor network representing upper half iPEPS network.
SVD is applied for the purpose of numerical stability.

First of all, we need an effective description of the upper (and lower) half of
the iPEPS tensor network, as shown in Figure 2.24. An early CTMRG [6] simply
employed the left-hand side of Figure 2.24, while [35] later on proposed an SVD in
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the middle to improve numerical stability by removing tiny singular values. Then,
contract the tensor U and singular value matrix S′ obtained from the SVD to get
tensor ΣU. Analogously, one can get ΣD from the lower half plane.

Fig. 2.25 Apply SVD on ΣUΣD and keep only the largest χ singular values
for truncation. The inverse ΣD−1ΣU−1 is prepared for the next step.

Next, construct matrixΣUΣD and apply an SVD. The renormalization or trunca-
tion is achieved by keeping only the largest χ singular values. To the right of Figure
2.25, we also show the inverse of matrixΣUΣD, which is required for the following
construction of projectors.

Fig. 2.26 Construction of projectors for CTMRG scheme. Two different pro-
jectors are built each time dealing with legs pointing in opposite directions.

The final step builds two projectors, as shown in Figure 2.26. One can easily verify
that P LUP LD ≡ 1. Projector P LU

j,i acts on the downward leg of T L
j+1,i+1 or CLUj+1,i+1.

Projector P LD
j,i acts on the upward leg of T L

j,i+1 or CLUj,i+1. The procedure needs to
be repeated for all i and j to generate a complete set of projectors. Projectors are
contracted with tensors within the red box in Figure 2.21 and Figure 2.22 to achieve
renormalization [35][29].

2.7 Ground State Search

In this section, we discuss how to search for the ground state represented by an iPEPS
under a given interacting Hamiltonian. Conventional perturbative methods hold
solely for weak interactions. Here, we employ imaginary time evolution [26], which
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is non-perturbative, to tackle strongly correlated systems. Both nearest-neighbor and
next-nearest neighbor interaction terms are allowed.

The imaginary time evolution method is based on the fact that an evolution to
β → ∞ projects out all excited states. Concretely, if one applies the time evolution
gate e−βH to any randomly generated state |ψ〉, there is

e−βH|ψ〉 = e−βEg |GS〉+ e−βE1 |1〉+ e−βE2 |2〉+ · · · , (2.10)

where |GS〉, |1〉, |2〉 are ground state, first, second excited state respectively, andEg ,
E1,E2 their corresponding energy. By definition,Eg < E1 < E2 < · · · . Therefore,
when β →∞, all the excited states acquire a negligibly small coefficient compared
with the ground state, which leaves only the ground state on the right-hand side.

Fig. 2.27 Apply nearest-neighbor Suzuki-Trotter gate to time evolve the state.
Perform SVD to separate the two tensors. The new tensors acquire larger bond
dimensions, which are subjected to truncations later on.

Direct application of the imaginary time evolution gate is numerically implausible
as it is a tensor with infeasibly high ranks. A common strategy is to utilize Suzuki-
Trotter decomposition

e−βH =
∏
(x,y)

e−βHx,y +O(β2), (2.11)

where Hx,y is the local two-site interaction term of site x and y. Suzuki-Trotter
decomposition turns the high-rank imaginary time evolution gate into a sequence of
two-site local Trotter gates e−βHx,y . The application of a Trotter gate is much easier.
Figure 2.27 exemplifies in the nearest-neighbor case. Next, an SVD is carried out
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and updated tensors are obtained. Notice that the updated tensors acquire a larger
bond dimension (D3d in this case). Therefore, additional truncation schemes are
needed to avoid exponential growth of the bond dimension.

Suzuki-Trotter decomposition comeswith a systematic error (namedTrotter error)
of order O(β2). Hence, to achieve high accuracy, one typically needs to use a small
time step β and apply the gate numerous iterations to go to the temporal boundary.

2.7.1 Simple Update

Simple update [36] is a numerically economical but relatively inaccurate update
scheme. As argued in section 2.2, the singular values can be regarded as the envi-
ronment of some finite region of the iPEPS. This is the core idea of simple update.

Fig. 2.28 Nearest neighbor simple update. (a) Application of Trotter gate g to
a horizontal bond. (b) An SVD gives an updated singular value matrix and two
tensors. (c)(d) Unmount the environmental singular value matrices. (e) Simple
update for vertical bond.

As shown in Figure 2.28, the Trotter gate is applied to some horizontal bond with
surrounding singular value matrices contracted as the environment. Next, an SVD
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is performed to give two tensors Q1 and Q2 and an updated singular value matrix
λ̃Hj,i. Then, detach the environment by contracting the inverse singular value matrices
from Q1 and Q2 to retrieve the updated tensors Γ̃j,i and Γ̃j,i+1. The simple update
of vertically aligned bonds can be conducted in an analogous way.

Fig. 2.29 Simple update diagrams for next-nearest neighbor terms connecting
site (j, i+1) and site (j+1, i) (anti-diagonal terms). A third site must be
passed through and two diagrams passing different assisting site are used for a
symmetric update.

The simple updates of next-nearest neighbor terms [7] are much more compli-
cated. There are in general two types of next-nearest neighbor terms— anti-diagonal
terms (connecting site (j, i) and site (j+1, i+1)) and diagonal terms (connecting site
(j, i+1) and site (j+1, i). As there are no bonds directly connect next-nearest neigh-
bor sites, one has to pass through a third assisting site. For each type of next-nearest
neighbor terms, there are two possible choices of the assisting site. Therefore, there
are in total four diagrams for the next-nearest neighbor simple update.
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Figure 2.29 shows the two diagrams for updating anti-diagonal bonds. After
applying the Trotter gate, two SVDs are performed to separate the large tensor into
three tensors and two singular value matrices [7]. Notice that when both diagrams
are included in one single update step, the Trotter gate has to be squared-rooted, i.e.
g = exp{−βH/2}.

Fig. 2.30 Simple update diagrams for next-nearest neighbor terms connect-
ing site (j, i) and site (j+1, i+1) (diagonal terms). A third site must be
passed through and two diagrams passing different assisting site are used for a
symmetric update.

Figure 2.30 shows the two diagrams for updating diagonal bonds, which is com-
pletely analogous to the anti-diagonal case. The fact that two diagrams are computed
in each next-nearest neighbor simple update step dramatically increases the numeri-
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cal costs. Moreover, utilizing singular values as the environment is also less optimal
in the next-nearest neighbor case, which produces a slightly less accurate result
compared with the nearest-neighbor update.

2.7.2 Full Update

Compared with simple update, (fast) full update scheme [10] takes the corner and
transfer matrices generated by CTMRG as the environment and are therefore more
accurate while numerically more expensive. Only nearest-neighbor full update is
considered here.

Fig. 2.31 Separation of physical leg for horizontal update. The physical leg and
the bond to be updated are separated from the tensor using SVD.

The goal of the full update is to find an optimal truncation from M̃ to M after
applying the Trotter gate. This is achieved by findingM to minimize ‖|M̃〉− |M〉‖,
where |M̃〉 and |M〉 are states before and after the truncation. However, manipulat-

Fig. 2.32 Construction of horizontal full environment Efull for the rank-3 ten-
sors nL and nR. Vertical environment can be constructed analogously.

ions directly on tensor M would be inconvenient. A more practical technique is to
separateM using SVD into an isometrymL (ormR) and a rank-3 tensor nL and nR
containing the physical leg and the bond to be updated, as shown in Figure 2.31.
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After the separation, one can construct the environment of the rank-3 tensors as
shown in Figure 2.32. Notice that tensor wL and wR are the conjugate of isometries
mL andmR respectively subject to a twist of legs analogous to Figure 2.16.

In terms of nL and nR, the optimal truncation turns into minimization of the cost
function (where ñ and n denotes tensors before and after the truncation)

d(ñL, ñR, nL, nR) = ‖|ñL, ñR〉 − |nL, nR〉‖. (2.12)

The norm is quadratic in nL and nR, and thus can be optimized using the alternating
least-square algorithm. Concretely, one first optimizes nL with fixed nR by asking
the partial derivative to be zero, as shown in Eq. (2.13) and Figure 2.33. Then, optim-

∂

∂uL
d(ñL, ñR, nL, nR) = 0 ⇒ nLX = Y (2.13)

Fig. 2.33 Diagrams for optimization of tensor nL with nR fixed, where uL

and uR is the Hermitian conjugate of nL and nR respectively.

ize nR in a similar manner, as shown in Eq. (2.14) and Figure 2.34. This two
procedures are iterated until the fidelity f = |di+1 − di|/d0 [37] where di is the
value of cost function at the ith iteration drops below a desired value.

∂

∂uR
d(ñL, ñR, nL, nR) = 0 ⇒ XnR = Y (2.14)

Fig. 2.34 Diagrams for optimization of tensor nR with nL fixed, where uL

and uR is the Hermitian conjugate of nL and nR respectively.

The full update requires computing the environment tensors through CTMRG in
every update step, which unavoidably consumes enormous computational resources.
Fast full update runs only one CTMRG step after each update considering the change
of tensors is small after an update step, and hence is more numerically efficient.



28 Tensor Network Techniques

2.8 Observable Measurement

Measurement of observables can be achieved after obtaining the ground state and the
corresponding corner and transfer matrices. Figure 2.35 and Figure 2.36 exemplifies
themeasurement of nearest-neighbor and next-nearest neighbor two-site observables.

Fig. 2.35 Measurement of nearest-neighbor horizontal two-site observables.
Two-site observables concerning vertically aligned sites can be measured in an
analogous manner.

Fig. 2.36 Measurement of next-nearest neighbor anti-diagonal two-site observ-
able. Two-site observables concerning diagonally aligned sites can be measured
in an analogous manner.

Usually, the physical legs of the related sites need to cross other lines multiple
times, which results in numerous swaps gates in the fermionic case. These swap
gates need extra attention in the implementation.



Chapter 3
Simulation Results

The quantum lattice models studied in this thesis include the Heisenberg model,
a free-fermion model and the Hubbard model, all with nearest-neighbor and next-
nearest neighbor interaction. This chapter presents the results of the simulations.
Section 3.1 discusses the general strategies for finding the ground state and comput-
ing observables. Section 3.2 presents the simulation results for the nearest-neighbor
and next-nearest neighbor Heisenberg model. They serve as sanity checks of the
iPEPS program by comparing our results with published ones. Section 3.3 presents
simulations of an exactly solvable free-fermion model, which verifies the imple-
mentation of the fermionic iPEPS method. Section 3.4 presents simulations of the
nearest-neighbor and next-nearest neighbor Hubbard model. The nearest-neighbor
Hubbard model is used to confirm the implementation of spinful fermions. New
discoveries from next-nearest neighbor Hubbard model provide new clues on the
spin and charge orders of the ground state near 1/8 hole doping. Analyses show that
an SU(2) symmetric uniform state can be lower in energy than the U(1) symmetric
stripe states.

3.1 General Strategies

This section describes technical details about the initial setup and parameter choices
that are used for the computation of all models. Unless specifically pointed out, the
parameter settings in this chapter follow the description of this section.
Initialization. All computations start with random initialization. In symmetric ten-
sor networks, it is often beneficial for the initial tensors to have several different
combinations of quantum numbers. A useful practice is to construct an isometry first
and assign a random number in the range [0, 1] to each data entry.
Simple Update. The Trotter error is of order O(τ2). Therefore, high accuracy
requires a small (imaginary) time step. However, a large number of iterations may be
needed to reach convergence if one begins with a tiny time step. A useful strategy is to
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start with a larger time step and gradually reduce it as the iteration goes. Concretely,
a fixed, large initial time step is used first, as the random initial state is usually quite
far away from the ground state. In practice, τ = 0.1 is found to be a very good
choice as an initial time step for all models studied. This initial time step is kept
fixed for usually dozens of iterations until the change of the average spectrum ∆Λ̄
drops below a threshold, e.g. 10−4. Then, one changes the time step depending on
the value of ∆Λ̄. A useful strategy is to reduce the time step by half when ∆Λ̄ drops
below Kτ2 where K is some constant, because the Trotter error is of order τ2.
Empirically,K = 1 is a good choice in most cases. In special cases when the size of
the unit cell is large, one may need a smaller value ofK. Simple update stops when
τ drops below a threshold value of e.g. 10−5.
CTMRG. The environment bond dimension χ is set based on the iPEPS bond
dimension D (or the number of multiplets kept D∗) and the symmetry. In practice,
χ = 10D for U(1) symmetric iPEPS and χ = 5D∗ for SU(2) symmetric iPEPS are
normally enough for a good measurement of observables. The average spectrum of
the corner and transfer matrices are monitored and the renormalization stops after
its change drops below a threshold of e.g. 10−6.
FullUpdate.The convergence properties of full update can be dramatically improved
by utilizing the ground state obtained by simple update as initialization.As the ground
state from simple update is already close to the exact ground state, the initial time
step of full update can be smaller, e.g. τ = 0.0125. Similarly, full update stops when
∆Λ̄ drops below a threshold value of e.g. 10−5.
Bond Dimension. Starting directly with a large bond dimension is in most cases not
an optimal strategy, as the optimization algorithms suffer from the local minimum
problem. Therefore, a common practice is to start with D = 2 (or D∗ = 2) and
increment the bond dimension by 1 after convergence.
Example. (i) Randomly initialize the tensors. SetD = 2 orD∗ = 2. (ii) Run simple
update with τ = 0.1 until ∆Λ̄ < 10−4. (iii) Run simple update with initial τ = 0.1
and reduce τ by half when ∆Λ̄ < τ2. Stop when τ < 10−5. (iv) Run CTMRG. (v)
Run fast full update with initial τ = 0.0125 and reduce τ by half when ∆Λ̄ < τ2.
Stop when τ < 10−5. (vi) Run CTMRG. (vii) Measure observables. (viii) Increment
D orD∗ by 1 and go to (ii). (ix) Finish computation when reaching desired accuracy
or bond dimensions.

3.2 Heisenberg Model

TheHeisenbergmodel is one of themost widely-studied quantum latticemodels. Par-
ticularly, nearest-neighbor Heisenberg model has received accurate quantum Monte
Carlo simulations, and the result can be used to testify our algorithms.

In this section, we focus on spin-1/2 Heisenberg model. Section 3.2.1 presents the
benchmark of several iPEPS algorithms using nearest-neighborHeisenbergmodel by
comparing with Monte Carlo simulations. Section 3.2.2 investigates typical phases



Heisenberg Model 31

of next-nearest neighbor Heisenberg model when next-nearest neighbor interaction
and magnetic frustrations come into play, and verifies the capability of simple update
to detect different phases.

3.2.1 Nearest-Neighbor Heisenberg Model

Nearest-neighbor Heisenberg model is the simplest type of Heisenberg model with
only nearest-neighbor interaction terms. The Hamiltonian used in this section is

H =
∑
〈i,j〉

Si · Sj , (3.1)

where we set J = 1 in Eq. (1.1) for simplicity. Figure 3.1 gives the deviation of the
computed ground state energy to the reference value Eg = −0.669437 [38][39].

Fig. 3.1 Ground state energy of nearest-neighbor Heisenberg model obtained
using different symmetries and update schemes. Symbols show the deviation to
the reference value Eg = −0.669437 [38][39].

It can be seen from the figure that the simple update with U(1) spin symmetry
produces a relative error of order 10−3, while full update provides better accuracy
of order 10−4. However, as the full update consumes much more computational
resources while it leads to solely a tiny improvement of accuracy, this will be the
only full update simulation in this thesis.
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Also, the ground state energy from the simulation with SU(2) spin symmetry is
higher than that with only U(1) symmetry, as shown in Figure 3.1. Therefore, the
results support an SU(2) symmetry breaking in the ground state of nearest-neighbor
Heisenberg model, consistent with the fact that its ground state is known to be an
Néel anti-ferromagnet.

3.2.2 Next-nearest Neighbor Heisenberg Model

The next-nearest neighbor Heisenberg model (also named J1-J2 Heisenberg model)
introduces next-nearest neighbor interactions. The Hamiltonian used here is

H =
∑
〈i,j〉

Si · Sj + J2
∑
〈〈i,j〉〉

Si · Sj , (3.2)

where again, we set J1 = 1 in Eq. (1.2) for simplicity. J1-J2 Heisenberg model
incorporates several different phases as the first term favours an anti-ferromagnetic
order in nearest neighbors and the second term favours an anti-ferromagnetic order
in next-nearest neighbors. Thus, different values of J2 lead to different orders. [40]

Fig. 3.2 Néel anti-ferromagnetic phase and collinear anti-ferromagnetic phase
at small and large J2, simulated withU(1) symmetry andD = 6. The direction
of arrows labels the direction of the spin. Numbers near the bonds give the
corresponding bond energy. Phase bondaries are taken from [41].

Figure 3.2 shows the two phases at small and large J2 simulated with U(1)
symmetry and D = 6. For small J2, the first term in Eq. (3.2) dominates and the
ground state still shows an Néel anti-ferromagnetic order, similar to the nearest
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neighbor Heisenberg model. For large J2, the second term in Eq. (3.2) dominates
and the ground state turns into a collinear anti-ferromagnetic phase, where anti-
ferromagnetic order appears in next-nearest neighbors.

Fig. 3.3 Quantum spin liquid phase and valence bond solid phase near the
transition region, simulated with U(1) symmetry and D = 6. Thick lines and
blue ovals indicate larger bindings and valence bonds. Numbers near the bonds
give the corresponding bond energy. Phase bondaries are taken from [41].

Figure 3.3 shows the two phases at transition region simulated with U(1) sym-
metry and D = 6. A smaller J2 gives a quantum spin liquid phase and a larger J2
produces a valence bond solid phase. The two phases are still directly visible even
though they only occupy a small region in the entire phase space.

The simulation of next-nearest neighbor Heisenberg model verifies that although
simple update is less accurate than full update, it is still capable to identify different
phases of the ground state. Therefore, in cases where the phases and orders are
more significant than the accuracy, simple update is already enough to reveal crucial
information.

3.3 Free-Fermion Model

The free-fermion model is an analytically solvable model with only the hopping and
pairing of a single channel of spinless fermions. The fact that it is exactly solvable
makes the free-fermion model a perfect choice for benchmarking our fermionic
iPEPS algorithms. The simplest choice is to include only the hopping terms.However,
this results in a highly critical system whose ground state possesses a logarithmic
correction to the entanglement entropy and hence violates the area law. Such violation
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can not be captured by the CTMRG procedure in the iPEPS algorithm. Therefore, a
pairing term is necessary to make the system less critical.

In this section, we directly aim at the next-nearest neighbor free-fermion model.
The Hamiltonian studied can be written as

H = −
∑
〈i,j〉

[c†i cj + c†jci + γ(c†i c
†
j + cjci)]

−t2
∑
〈〈i,j〉〉

[c†i cj + c†jci + γ(c†i c
†
j + cjci)] + µ

∑
i

c†i ci,
(3.3)

where γ is the pairing amplitude and µ the chemical potential. Here, we set γ = 1
in all our computations. Analytic diagonalization can be achieved by Bogoliubov
transformation as described in [42].

Fig. 3.4 Relative errors of the ground state energy of the free-fermion model
compared with the exact solutions. Circle and diamond symbols label critical
and gapped phases respectively.

The errors of the ground state energy with different chemical potential and bond
dimensions relative to the exact diagonalization are shown in Figure 3.4. In most
cases, errors at D = 4 drops below 10−2, confirming the validity of the simulation.
Besides, the errors grow as t2 increases. This is the expected artifact of the inaccuracy
of next-nearest neighbor simple update.
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Theoretically, free-fermion model incorporates a critical and a gapped phase. At
t2 = 0, the phase boundary lies exactly at µ = 4, while at positive t2, the boundary
will move towards a larger µ. The two phases are labelled in Figure 3.4 using circle
and diamond symbols. It can be seen that the accuracy of simulation in the gapped
phase is much higher than that in the critical phase. This indicates a slight violation
of the area law of entanglement entropy in the critical phase.

3.4 Hubbard Model

Hubbard model is one of the most famous effective models for strongly correlated
systems, which is considered to capture key ingredients of high-Tc superconductors.
The nearest-neighbor Hubbard model has been shown to possess a Mott insulat-
ing phase at half-filling and is believed to generate a strange metallic phase and
superconductivity at finite hole doping.

In this section, we focus on the Hubbard model with a finite next-nearest neighbor
hopping amplitude. The nearest-neighbor Hubbard model will be studied first in
section 3.4.1 and compared with existing results as a benchmark of the algorithm.
Then, section 3.4.2 presents new data for next-nearest neighbor Hubbard model
where controversy turned up recently [8][43].

3.4.1 Nearest-Neighbor Hubbard Model

The nearest-neighbor Hubbard model includes only a nearest-neighbor hopping
term and an on-site interaction term. An additional chemical potential term may be
invoked to control the doping. The Hamiltonian used in this section is

H = −
∑
〈i,j〉,σ

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓ + µ
∑
i

ni, (3.4)

where we have set t = 1 in Eq. (1.3), µ is the chemical potential and ni the
particle number operator. The nearest-neighbor Hubbard model at half filling has
been studied by a variety of numerical methods, including Auxiliary Field Quantum
Monte-Carlo (AFQMC) method, Density Matrix Embedding Theory (DMET) and
DensityMatrix RenormalizationGroup (DMRG) [44]. Therefore, we can benchmark
our algorithms by comparing with existing results.

Figure 3.5, 3.6, 3.7 and 3.8 show the ground state energy, the double occupancy
and the local moment of the nearest-neighbor Hubbard model simulated on a 2×2
supercell with U = 0, U = 4, U = 8 and U = 12 respectively. The chemical
potential µ is set to −U/2 to ensure an explicit particle-hole symmetry and hence a
half filling. The U = 0 case is equivalent to an exactly solvable two-channel free-
fermion model, and thus can be cross-checked with the free-fermion simulations.
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Fig. 3.5 Ground state energy, double occupancy and local moment of nearest-
neighbor Hubbard model with U = 0 obtained using U(1) symmetry. Refer-
ence value Eg = −0.16211 comes from the exact solution [45].

Fig. 3.6 Ground state energy, double occupancy and local moment of nearest-
neighbor Hubbard model with U = 4 obtained using U(1) symmetry. Refer-
ence values come from AFQMC, DMET and DMRG [44].
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Fig. 3.7 Ground state energy, double occupancy and local moment of nearest-
neighbor Hubbard model with U = 8 obtained using U(1) symmetry. Refer-
ence values come from AFQMC, DMET and DMRG [44].

Fig. 3.8 Ground state energy, double occupancy and local moment of nearest-
neighbor Hubbard model with U = 12 obtained using U(1) symmetry. Refer-
ence values come from AFQMC, DMET and DMRG [44].



38 Simulation Results

It can be seen that the double occupancy decreases and the local anti-ferromagnetic
moment is enhanced asU increases. This is the expected behaviour of a rising on-site
interaction. Also, the accuracy of the simulation is better with a larger value of U .
This indicates a less critical ground state compared with free fermions.

3.4.2 Next-Nearest Neighbor Hubbard Model

The next-nearest neighbor Hubbard model introduces next-nearest neighbor hopping
terms which lead to magnetic frustration. Thus, the ground state may incorporate a
variety of different orders in charge and spin. The Hamiltonian of the next-nearest
neighbor Hubbard model can be written as

H = −
∑
〈i,j〉,σ

(c†iσcjσ + c†jσciσ) + µ
∑
i

ni

−t2
∑
〈〈i,j〉〉,σ

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓,
(3.5)

where again t1 = 1 and a chemical potential term is added to control the doping.
A consensus has been reached that the ground state of the nearest-neighbor

Hubbard model at 1/8 hole doping is a stripe state with a period of 8 sites in the
charge order [46]. However, the period 4 stripe typically observed in experiments
[47–49] was found to have a higher energy. Therefore, it is natural to suspect that the
next-nearest neighbor interaction contributes in reality.

Fig. 3.9 Period 4 stripe obtained using U(1) iPEPS. Sizes of the red disk and
lengths of arrows scale with the hole density and the local moment, with average
values indicated in the top and bottom rows. Widths of the bond grow with the
singlet pairing amplitude with two colors labelling opposite signs.

A detailed scan of the phase space usingU(1) iPEPS shows that the model prefers
a stripe state with period 4 in charge order and period 8 in spin order within the
range 0.16 < −t2 < 0.42 [8]. However, another research using DMRG on a width
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4 cylinder and t2 = −0.25 generates a ground state with period 4 charge density
wave only [43]. Therefore, we intend to investigate these two contradictory results
by studying the charge and spin orders of the ground state at t2 = −0.25 using U(1)
and SU(2) symmetric iPEPS methods.

Fig. 3.10 Uniform state obtained using SU(2) iPEPS. Sizes of the red disk
and lengths of arrows scale with the hole density and the local moment, with
average values indicated in the top and bottom rows. Widths of the bond are
proportional to the SU(2) symmetric singlet pairing amplitude with two colors
labelling opposite signs.

Figure 3.9 shows a stripe state at t2 = −0.25 and 1/8 doping obtained using U(1)
iPEPS at a fixed bond dimension D = 4 with an 8×2 supercell. This ground state
features a charge density wave of period 4 and an anti-ferromagnetically ordered spin
density wave of period 8. Singlet pairing amplitudes∆s = (ci↑cj↓−cj↑ci↓)/

√
2 are

enhanced and the local magnetic moments are suppressed near large hole densities.
These characteristics generally agree with the previous findings [8].

Figure 3.10 shows the ground state also at t2 = −0.25 and 1/8 doping obtained
using SU(2) iPEPS at a fixed bond dimension D = 4 (D∗ = 3) with a 4×2
supercell. Two supercells are included in the figure for a better comparison. This
ground state is uniform with neither charge density wave nor spin density wave. A
d-wave superconducting order is clearly observed by looking at the SU(2) symmetric
singlet pairing amplitudes. The absence of a charge order is in contrast to the DMRG
simulation [43] which found a stable charge density wave in the ground state.

An intriguing discovery is that the SU(2) symmetric uniform state in Figure
3.10 has a much lower energy Eg = −0.6636 than the U(1) symmetric stripe state
(Eg = −0.6152). Therefore, the SU(2) symmetric uniform state becomes a highly
competitive ground state at t2 = −0.25 and 1/8 doping. Although the extrapolation
with respect to bond dimensions is not possible due to the limited computation time
available in this project, we want to emphasize that the value Eg = −0.6636 is
already close to the U(1) iPEPS extrapolation Eg ∼ −0.68 found in [8].

In iPEPS simulations, doping is tuned utilizing chemical potential. Therefore, it
is in general not possible to accurately fix the doping on a target value. Hence, to
obtain an accurate estimate of the ground state energy at 1/8 doping, five states are



40 Simulation Results

computed with a hole doping near 1/8 and the ground state energy at exactly 1/8
doping can be extracted by a linear fitting. The U(1) iPEPS with 8×2 supercell
suggests a ground state energy of Eg = −0.6140 and the SU(2) iPEPS with 4×2
supercell gives Eg = −0.6650, as indicated in Figure 3.11. Also, as the SU(2)
symmetric iPEPS produces a uniform state which should be irrelevant to the size of
the supercell, simulations with a 2×2 supercell are carried out as a cross verification.

Fig. 3.11 Comparison of U(1) and SU(2) symmetric ground state energy.
Green shaded region labels the extrapolation of U(1) symmetric iPEPS [8].
The SU(2) symmetric uniform states are lower in energies than the U(1)
symmetric period 4 stripes, and are already close to the extrapolated lower
bound in theU(1) case. Linear fitting gives the ground state energies at exactly
1/8 doping. SU(2) simulations with 4×2 and 2×2 supercells produce similar
outcomes, confirming the uniformity of the SU(2) symmetric ground state.

Figure 3.12 shows various observables measured in U(1) and SU(2) iPEPS
simulations. The double occupancy of the SU(2) symmetric uniform states are
much larger than that of the U(1) stripes. The SU(2) symmetry suppresses the local
moments and thus no magnetization is observed in the SU(2) symmetric states,
while U(1) symmetric stripes host an anti-ferromagnetic order and hence a finite
magnetization. Also, the average singlet pairings in SU(2) symmetric ground states
are much stronger than in the U(1) cases. This suggests a possible superconducting
ground state near 1/8 doping.

In Figure 3.12(d), we investigate the contribution of nearest-neighbor energies and
next-nearest neighbor energies in U(1) and SU(2) symmetric ground states. It can
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be seen that the average next-nearest neighbor energies (around −0.01) are heavily
suppressed and the nearest-neighbor terms dominate in the U(1) symmetric stripes.
This is within expectation as the anti-ferromagnetic orders in stripes compete against
the next-nearest neighbor hopping. By contrast, the average next-nearest neighbor
energies (around−0.1) in SU(2) symmetric uniform state are much lower as no spin
orders exist under the SU(2) symmetry.

Fig. 3.12 Various observables of U(1) and SU(2) symmetric ground state:
(a) double occupancy vs doping; (b) avarage magnetization vs doping; (c) av-
erage singlet pairing amplitude vs doping; (d) contribution of nearest-neighbor
(NN) energies and next-nearest neighbor (NNN) energies. The nearest-neighbor
energies are divided by 3 for a better visual presentation.

The discovery of a uniform d-wave superconducting state is basically within ex-
pectation. Numerous previous investigations on nearest-neighbor Hubbard model
[44][46] or t-J model [50][35][51] (viewed as a descendant of the Hubbard model)
have already probed a uniform superconducting state whose energy is merely slightly
higher than the stripes [52]. Thus, it is not surprising that this uniform state survives
an additional next-nearest neighbor hopping term. However, the next-nearest neigh-
bor interactions lead to magnetic frustrations in the stripes and hence dramatically
raise the energy. This provides a possibility for the SU(2) symmetric uniform state
to be the ultimate ground state, as it incorporates no spin orders and is therefore free
from any magnetic frustrations.

In summary, simulations using SU(2) symmetric iPEPS algorithms present a
highly competitive ground state with SU(2) symmetry for the next-nearest neighbor
Hubbard model at t2 = −0.25 and 1/8 hole doping. The energy of this SU(2) sym-



42 Simulation Results

metric ground state at a rather small bond dimension D= 4 is already approaching
the lower bound of the U(1) symmetric counterparts. The newly discovered ground
state is uniform without any charge and spin orders. The lack of anti-ferromagnetic
orders allows much lower next-nearest neighbor energies and thus produces a lower
energy overall.



Chapter 4
Conclusions

In this thesis, we employ the symmetric iPEPS methods to simulate several 2-
dimensional quantum lattice models with nearest-neighbor and next-nearest neigh-
bor interactions. The PEPS tensor network makes use of a network of rank-5 tensors
with one physical index representing the local state and four indices connecting
neighboring tensors which encodes the entanglement. Infinite PEPS utilizes trans-
lational invariance and is able to tackle infinite-size systems using a supercell of a
finite number of tensors. The CTMRG scheme encodes an infinitely-extended envi-
ronment using a finite number of corner and transfer matrices. Fermionic statistics
are captured by considering parity preserving tensors and adding swap gates at line
crossings. Symmetries of tensors are automatically tracked using the QSpace tensor
library. The ground state can be obtained through algorithms based on the imaginary
time evolution and truncation schemes such as the simple and full update counteract
the exponential growth of the bond dimension. Observables can be measured after
the ground state and corresponding corner and transfermatrices have been computed.

Simulations of the nearest-neighbor Heisenberg model benchmarks the simple
update scheme and the fast full update scheme. The simple update scheme produces
a ground state with a relative error of order 10−3 while the fast full update scheme
achieves an accuracy of order 10−4. Also, U(1) and SU(2) symmetric simulations
confirm the ground state to be an Néel anti-ferromagnet.

Simulations of next-nearest neighbor Heisenberg model confirm the capability
of the simple update scheme to capture distinct physical phases. The computations
with J2 = 0.3, J2 = 0.5, J2 = 0.6 and J2 = 0.8 generate ground states being a
Néel anti-ferromagnet, a quantum spin liquid, a valence bond solid and a collinear
anti-ferromagnet respectively.

Simulations of an exactly solvable free-fermion model and the nearest-neighbor
Hubbard model confirm the validity of the implementation of fermionic iPEPS. The
accuracy is satisfactory even when the ground state of the system is critical and
slightly violates area law.

Simulations of next-nearest neighbor Hubbard model with next-nearest neighbor
hopping amplitude t2 = −0.25 at 1/8 hole doping produce a U(1) symmetric
ground state with a period 4 in the charge order and a period 8 in the spin order, as
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well as an SU(2) symmetric uniform ground state with a d-wave superconducting
order but no charge or spin orders. This is in contrast to the previous DMRG results.
Remarkably, the SU(2) symmetric uniform state has a much lower energy than the
U(1) symmetric stripe at fixed bond dimensionD=4. However, current simulations
are insufficient to draw solid conclusions as the extrapolation with respect to bond
dimensions is not yet available. The low energy of the SU(2) symmetric uniform
state presumably comes from the avoidance of anti-ferromagnetic orders, which
allows much lower next-nearest neighbor energies.
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