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ABSTRACT: This document presents a self-contained analytical construction of classi-
cal gauge field theory. Among all physical theories, the classical gauge field theory is
the most inclusive framework for interaction theories. Also, it is the most fundamental
theory with rigorous analytical support. Accordingly, a skeleton of this analytical struc-
ture with minimal mathematical concepts involved is hither introduced. The document
consists of nine chapters with the first eight chapters being the mathematical preparation
from logic to fibre bundle and the last chapter their application to the classical gauge
field theory. As a self-contained construction, all the concepts mentioned in a definition
should be found a definition in the previous context.
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Methodology
This part introduces the methodology of studying Physics
recognized by this document.

Definition of Physics
Definition. Physics is the search for and application of
rules that can help us understand and predict the world.

This definition is formulated by
m⋃

i=1

{ψi, ∂µψi} ⇒ I[ψ, ∂µψ] | +
n∑

i=1

σi ⇒ H
∣∣∣
℘

All physical contents in this document is identified through
this definition.

First Principle
The first principle of Physics is the symmetric principle

Symmetric Principle. The Symmetric Principle is formu-
lated as

ıδI = 0

where I is the action and ıδ is the internal variation.

Locality Condition

The locality condition is interpreted as

Locality Condition. The action type-I has the formula-
tion

I =

∫
εL

where Lagrangian L is a local continuous functional of ψ
and ∂µψ only.

First Theorem

The first theorem of Physics is the Noether’s theorem

Noether’s Theorem. Every continuous symmetry in a the-
ory Lξψ corresponds to a conserved current

J µ =
∂L
∂∂µψ

Lξψ − `µ

Noether’s theorem is logically dependent on the sym-
metric principle.

Conventions and Notations
This section is to claim the default values of conventions and notations.

Abstract Index Notation This document complies abstract index notation.
Einstein’s Summation Convention Repeating upper and lower indexes represents summation or contraction.
Indexes This document Greek letters represent abstract indexes and Latin letters represent specific indexes.
Fonts Latin letters in Italic represent variables and Latin letters in Roman represent particular specified meaning.
Equations Only key equations are numbered.
Unit System This document has two unit system — natural unit system and geometric unit system. Geometric unit

system in this document is interpreted as c = ~ = 1 and gravitational constant G is used as coupling constant.

Definition and Proof
This section illustrates the undefined mathematical grammar.

The definition should comply the following pattern

Definition. A concept is a concept satisfying conditions. Definition. A concept is adjective if conditions

In the first formula, concept is the concept already well defined, concept is the concept that is defined through this
definition. The second formula gives the definition of a concept as adjective concept. Only concepts and properties of
concept should be expressed as definition.

The proof should comply the following pattern.

Proof. condition ⇒ key point 1⇒ · · · ⇒ key point i⇒ · · · ⇒ key point n⇒ conclusion �



1 Foundation of Mathematics
Mathematics is the language of choice for scientific de-
scription and modelling. Mathematics describes objects
in a logical way, preventing any mistakes due to incon-
sistency. A mathematical consistent theory is only math-
ematically falsifiable, which provides great property for
applicative analysis.

1.1 Basics of Mathematics
This section illustrates the foundation of Mathematics.

1.1.1 Mathematical Logic

Mathematics is a kind of scientific language. Just as all the
languages, Mathematics has to start with some concepts
that are not able to be explained by itself. These concepts
are called intuitive concepts. The intuitive concepts are
listed as follows

Concept . Symbol is the character in LATEX 2ε

Concept . Independent Variable is a symbol, convention-
ally being Greek letter.

Note. In foundation of Mathematics, independent
variables are usually assigned with true or false.

Note. A predicate is an independent variable as-
signed with true or false.

Concept . Predicate Constant ∈ is a symbol.

Note. The independent variables and predicate con-
stant can form a predicate as

ϕ ∈ ψ

Concept . Negation ¬ is a symbol defined as

ψ true false
¬ψ false true

Concept . Disjunction ∨ is a symbol defined as

ψ true true false false
ϕ true false true false

ψ ∨ ϕ true true true false

Concept . Conjunction ∧ is a symbol defined as

ψ true true false false
ϕ true false true false

ψ ∧ ϕ true false false false

Concept . Implication→ is a symbol defined as

ψ true true false false
ϕ true false true false

ψ→ ϕ true false true true

Note. The inference⇒ is a true implication.
Note. The truth of a predicate can be influence by

some other predicates. The predicate ψ under condition
predicate x will be denoted by ψ|x and its truth can be dif-
ferent for different condition predicates.

Concept . Existential Quantification ∃ is a symbol de-
fined as

∃xψ|x ⇔
∨
x
ψ|x

where
∨

represents the disjunction of all conditioned pred-
icates.

Concept . Universal Quantification ∀ is a symbol defined
as

∀xψ|x ⇔
∧
x
ψ|x

where
∧

represents the conjunction of all conditioned
predicates.

Concept . Priority ( ), [ ] is a pair of symbols. The inde-
pendent variables and predicates inside priority are re-
garded as an independent variable or a predicate.

Note. Priority ( ) is higher than [ ] unless stated.

Concept . Class C is a symbol defined as

C = {x |ψ(x)}

where x is the independent variable and ψ(x) is a predi-
cate. The above expression means

x∈C ⇔ ψ(x) is true

Concept . Subclass S of class C is a class satisfying

x∈S ⇒ x∈C

Concept . Object x is a symbol satisfying x∈C where C is
a class.
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Note. Class is an essential concept in mathematical
logic. The definition of class will allow the existence of
some weird class. For example, the Russell class is de-
fined as

R ..= {x | x< x}

which means it “contains” only the object that does not
belong to itself.

Note. Symbol ..= refers to “define as”.
The introduction of intuitive concepts has ended here.

All the concepts in the subsequent texts will have a rigor-
ous definition.

1.1.2 Set Theory

This subsection illustrates the axiomatic set theory.
Note. Although this subsection aims at axiomatic set

theory, the elaboration will not follow the genuine intro-
duction of axiomatic set theory.

Note. Set is a very important concept in Mathematics.
In mathematical logic, there is a concept, class. However,
class allows some impractical situation like Russell class
to exist. Thus a new concept is needed to make Mathemat-
ics pragmatic.

Definition. Set is a class if it can be a subclass.

Note. This definition can be different from many
elaborations of axiomatic set theory which define the set
through several axioms. In this document, the axioms will
be presented as the definition of operations on sets.

Definition. Element is the object of a set.

Definition. Proper class is a class that is not a set.

Note. The Russell class is a proper class.

Definition. Subset is the subclass of a set.

Note. Statement “Set A is a subset of set B” is denoted
by A ⊂ B or B ⊃ A.

Definition. Set A and set B is equal if

A ⊂ B and B ⊂ A

Definition. Set A is a proper subset of set B, denoted by
A ( B, if

A ⊂ B and A , B

Definition. Empty set ∅ is a set that ψ(x) is false for all
independent variables.

Operation of Sets

Definition. The union of set A and set B is defined as

A ∪ B ..= {x | x∈A ∨ x∈B }

Definition. The intersection of set A and set B is defined
as

A ∩ B ..= {x | x∈A ∧ x∈B }

Definition. The complement of set A with respect to U
(A ⊂ U) is defined as

{U A ..= { x | x∈U∧ x<A }

Map and Structure

Definition. Cartesian Product of set X and set Y is de-
fined as

X × Y ..= { (x, y) | x ∈ A, y ∈ B }

Definition. Graph G of X with respect to Y is a subset of
X × Y satisfying

| (x, y) ∈ R| ∧ | (x, y′) ∈ G| ⇒ y = y′

where = means the independent variables in two sides are
the same variable.

Definition. Map f is a graph r ⊂ X × Y together with set
X and set Y , denoted by

f : X → Y or f : x 7→ y

where x ∈ X and y ∈ Y .

Note. The value of map f at variable x is denoted by
f (x) from now on.

Definition. Domain dom( f ) of a map f : X → Y is the
set X, denoted by

dom( f ) ..= X

Definition. Codomain cod( f ) of a map f : X → Y is the
set Y , denoted by

cod( f ) ..= Y

Definition. Image img( f ) of a map f : X → Y is defined
as

img( f ) ..= {y ∈ Y | (∃x∈X) f (x) = y }

Definition. Image of a map f : X → Y to set U ⊂ X is
defined as

img( f )[U] ≡ f [U] ..= {y ∈ Y | (∃x∈U) f (x) = y }

– 2 –



Note. Symbol ≡ refers to “denoted by”.
Note. Previously, there is a concept called range of a

map. However, range has different definitions in different
documents. Thus, in order to coincide with other docu-
ments, concept range is deactivated.

Definition. The restriction of map f : X → Y to X̃ ⊂ X is
defined as

f̃ : x̃ 7→ y ∧ x̃ ∈ X̃

Definition. The composite of map f : X → Y and map
g : Ỹ → Z is defined as

[g ◦ f ](x) ..= g( f (x))

if dom(g) ⊂ img( f ).

Definition. Two maps f and f ′ are equal if

(i) dom( f ) = dom( f ′)

(ii) graph( f ) = graph( f ′)

Definition. Map f : x 7→ y is injective if

(∀x, x′) :: f (x) = f (x′)⇒ x = x′

Definition. Map f : x 7→ y is surjective if

(∀y∈Y,∃x∈X) :: f (x) = y

Definition. Map f is bijective if it is injective and surjec-
tive.

Note. Symbol :: refers to “such that”.
Note. A map that is injective, surjective or bijective is

also called injection, surjection or bijection respectively.

Definition. Constant map f is defined as

(∀x, x′∈X) :: f (x) = f (x′)

Definition. Identity map idX of set X is defined as

idX : x 7→ x

Definition. Inverse image of map f : X → Y to set Ỹ ⊂ Y
is defined as

img−1( f )[Ỹ] ≡ f −1[Ỹ] ..= { x∈X | f (x)∈ Ỹ }

Definition. Inverse map f −1 : img( f ) → X of injection
f : X → Y is defined as

| f −1(y) ..= x | ∧ | f (x) = y |

Connotation. Mathematical structure Σ on set X is a sub-
set of S(X) where S(X) is a set generated by X.

There is an equivalent definition of mathematical
structure on set

Connotation. Mathematical structure σ on set X is a
map σ : S(X) → { true, false } where S(X) is a set gener-
ated by X and { true, false } is the set of true and false.

Note. It is easy to verify the equivalence of the above
definitions. Set {x |σ(x) } can be the set needed in the first
definition; and if there is a chosen subset Σ of S(X), σ
maps every element of the subset to true and the rest to
false.

Connotation. Morphism m : X → Y from structured set
(X, σ) to (Y, τ) is a bijection satisfying

σ(x)⇔ τ[m(x)]

Definition. Family of sets F is a class with all objects
being sets.

Note. A family of sets may be a proper class.

Definition. Power set P of set X is defined as

P ..= { X̃ | X̃ ⊂ X }

Theorem. Power set is a set.

Proof. There exists a class P such that P ⊂ P. �

1.1.3 Category Theory

Definition. Indexing function ι of family of sets F in-
dexed by non-empty set I is a surjection

ι : i→ Xi

where i ∈ I, Xi ∈ F , non-empty refers to I , ∅.

Note. A family of sets F is indexed (by I) if there
defines an indexing function from I to F .

Definition. Union of sets in indexed family is defined as⋃
i∈I

Xi
..= {x | (∃i) :: x ∈ Xi }

Definition. Intersection of sets in indexed family is de-
fined as ⋂

i∈I

Xi
..= {x | (∀i) :: x ∈ Xi }
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Definition. Cartesian product of sets in indexed family is
defined as ∏

i∈I

Xi
..= {m : I → Xi | (∀i) m(i) ∈ Xi }

Definition. Category C(ob,mph) is a class ob(C) of ob-
jects together with a set mph(X,Y) of morphisms between
object X and Y .

Definition. Functor F from category C to category D is
a map obF : obC → obD together with a map mphF :
mphC → mphD satisfying

(i) mphF( f ◦ g) = mphF( f ) ◦mphF(g)

(ii) mphF(idX) = idobF(X)

Definition. Functor Transformation τ from functor F to
functor G is a set of morphisms

τ ..= {τX ∈ mph | τX : obF(X)→ obG(X)}

Definition. A functor transformation τ : F → G is natu-
ral if

(∀X,Y ∈ob, f ∈mph) :: τX ◦mphF( f ) = mphG( f ) ◦ τY

1.2 Algebraic Structure
This section illustrates mathematical structure of algebra.

1.2.1 Group Structure

Definition. Binary operation on set X is a map f : X ×
X → X.

Note. In binary operation, notion f (x, y) is usually
replaced by x f y.

Note. Binary operation is a mathematical structure.

Definition. Product · on a set X is a binary operation on
set X.

Note. Usually, product x · y can be abbreviated to xy.

Definition. Semi-group Ĝ is a non-empty set together
with a product · satisfying associative condition

(∀g, h, k ∈ Ĝ) ::(gh)k = g(hk)

Definition. Monoid M̂ is a semi-group satisfying

(∃e ∈ M̂) :: ge = eg = g

Note. Element e is called identity element of monoid
M̂.

Definition. Group G is a monoid satisfying

(∀g ∈ G,∃h ∈ G) :: gh = hg = e

Note. Element h is called inverse element of element
g, denoted by g−1.

Theorem. The identity element of a monoid and inverse
element of an element in a group are unique.

Proof. There are the following argument

(i) If e′ and e both are the identity element, then

e = ee′ = e′

(ii) If h and k both are the inverse element of g then

h = he = hgk = ek = k

which ends the proof. �

Definition. Group G is abelian if

(∀g, h ∈ G) :: gh = hg

Note. Abelian group is also called commutative
group.

1.2.2 Ring Structure
Definition. Ring (R,+, ·) is a non-empty set R together
with binary operation addition + and multiplication · sat-
isfying

(i) Addition: (R,+) is an abelian group

(ii) Multiplication: (R, ·) is a semi-group.

(iii) Distribution: (∀r, s, t ∈ R) :: r · (s + t) = r · s + r · t

Note. The last condition indicates the compatibility
of addition and multiplication.

Definition. Ring (R,+, ·) is commutative if

(∀r, s ∈ R) :: r · s = s · r

Definition. Ring (R,+, ·) is a ring with identity if (R, ·) is
a monoid.

Definition. An element r in a ring (R,+, ·) with identity is
a unit if it has a multiplicative inverse.

Definition. A ring (R,+, ·) with identity is a division ring
if every element except the identity element of addition is
a unit.

Definition. Field is a commutative division ring.
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1.3 Number Theory
This section illustrates the construction of numbers.

1.3.1 Relation Structure

Definition. Relation R of set X is a subset of X × X

Note. Usually, that element x and element y has rela-
tion R, i.e. (x, y) ∈ R, is denoted as xRy.

Note. Relation is a mathematical structure on set.

Definition. Equivalence relation ∼ of set X is a relation
satisfying

(a) Reflexivity: (∀x∈X) :: x ∼ x

(b) Symmetry: x ∼ y⇒ y ∼ x

(c) Transitivity: | x ∼ y | ∧ |y ∼ z | ⇒ x ∼ z

Definition. Equivalence class E|x of a set X with equiva-
lence relation ∼ determined by x is defined by

E|x ..= {y∈X | y ∼ x }

Note. According to Semiotics, equivalence class
should be phrased as equivalence set since it can be easily
proven that the equivalence class is a set. However, due to
some historical reasons, concept equivalence set was not
invented. Thus, to coincide with other documents, equiva-
lence class is used in this document.

Note. Two sets X and Y are disjoint if X ∩ Y = ∅.

Theorem. Two equivalence class E|x and E′|x′ can be ei-
ther equal or disjoint.

Proof. There are the following arguments

(i) If E|x ∩ E′|x′ = ∅, then they are disjoint
(ii) If E|x ∩ E′|x′ , ∅, suppose y ∈ E|x ∩ E′|x′ = ∅

and there is

| y ∼ x | ∧ | y ∼ x′ | ⇒ | x ∼ y | ∧ | y ∼ x′ | ⇒ x ∼ x′

Thus (∀w ∈ E|x) w ∈ E′|x′ , which means E|x ⊂
E′|x′ Reverse E|x and E′|x′ to get E′|x′ ⊂ E|x Thus
E|x and E′|x′ are equal

Thus, the theorem is proved. �

Definition. PartitionD of set X is a family of sets with all
objects being non-empty disjoint subsets of X.

Theorem. A partition is a set.

Proof. There exists a classD such thatD ⊂ D. �

Note. If define every element of a partition as an
equivalence class, there will be a bijection between the
partition and the equivalence class.

Note. Quotient space X/∼ is a partition formed by∼.

Definition. Order relation ≺ of set X is a relation satisfy-
ing

(a) Comparability:

| x ≺ y | ∧ |y ≺ x | = flase

| x ≺ y | ∨ |y ≺ x | = true

(b) Non-reflexivity: x ≺ x = false

(c) Transitivity: (x ≺ y) ∧ (y ≺ z)⇒ x ≺ z

Definition. Partial order relation 4 of set X is a relation
satisfying

(a) Reflexivity: x 4 x

(b) Anti-symmetry: | x 4 y | ∧ |y 4 x | ⇒ x = y

(c) Transitivity: | x 4 y | ∧ |y 4 z | ⇒ x 4 z

Definition. Total order relation 4 of set X is a relation
satisfying

(a) 4 is a partial order relation

(b) Comparability:

| x 4 y | ∧ |y 4 x | = flase

| x 4 y | ∨ |y 4 x | = true

Note. The order relation and partial order relation can
be disparate. There are no subset interconnections in be-
tween. However, partial order relation and total order re-
lation have a clear including interconnection, i.e. a total
order relation must be a partial order relation.

Note. A set with (partial or total) order relation is
called (partially or totally) ordered set.

Definition. Open interval (a, b) in an ordered set (X,≺) is
defined as

(a, b) ..= { x∈X | a ≺ x ≺ b }

Note. If (a, b) = ∅, then a is the immediate prede-
cessor of b and b is the immediate successor of a.

Definition. Alphabetical order relation ≺ of Cartesian
product X × Y of two ordered set (X,≺ |X) and (Y,≺ |Y )
is defined as

(x1, y1)≺ (x2, y2)⇔ (x1≺ x2) ∨ [| x1 = x2 | ∧ |y1≺y2 |]
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Note. Alphabetical partial or total order relation of
Cartesian product can be defined through similar ways.

Note. Element b is the largest element of partially
ordered set (X,4) if (∀x ∈ X) :: x 4 b. Similarly, element
a is the smallest element of partially ordered set (X,4) if
(∀x∈X) :: a 4 x.

Note. Subset X̃ of partially ordered set (X,4) is
bounded above if (∃b∈X,∀x̃∈ X̃) :: x̃ 4 b and b is the
upper bound. Similarly, subset X̃ of partially ordered
set (X,4) is bounded below if (∃a∈X,∀x̃∈ X̃) :: a 4 x̃
and a is the lower bound.

Definition. Supremum sup is the smallest element of
upper bound. Infimum inf is the largest element of
the lower bound.

Note. A set X has supremum property (resp
infimum propert) if for any non-empty subset of X
which is bounded above (resp below) has an supre-
mum (resp infimum).

1.3.2 Real Number Field
Definition. Real number set R is a totally ordered field
satisfying

(a) (∀x, y, z ∈ R) :: x 6 y⇒ x + z 6 y + z

(b) (∀x, y ∈ R) :: | x 6 y | ∧ |z > 0 | ⇒ x · z 6 y · z

(c) Order relation 6 has supremum property

Definition. A subset A of R is inductive if

(a) 1 ∈ A

(b) (∀x ∈ A) :: x + 1 ∈ A

Definition. Positive integer set Z+ is defined as

Z+
..=
⋂
i∈A

Ai

where A is the set of all inductive subsets in R and Ai is
inductive subset of R

Note. Section of positive integer Zn (n-tuple) is

Zn
..= { z ∈ Z+ | 1 6 z 6 n }

Definition. Integer set Z is defined as

Z ..= Z+ ∪ {0} ∪ Z−

where
Z− ..= {−x | x ∈ Z+ }

Definition. Rational number Q is defined as

Q ..= { x · y−1 | | x, y ∈ Z | ∧ |y , 0 | }

Definition. Open interval (x, y) (−∞, y), (x,+∞) is de-
fined as

(x, y) ..= { z | x < z < y }

(−∞, y) ..= { z | z < y }

(x,+∞) ..= { z | x < z }

Definition. Closed interval [x, y], (−∞, y], [x,+∞) is de-
fined as

[x, y] ..= { z | x 6 z 6 y }

(−∞, y] ..= { z | z 6 y }

[x,+∞) ..= { z | x 6 z }

Note. There are also definitions for half open and half
closed interval. But they are not adopted in this document.

Note. Sometimes the real number set is written as
(−∞,+∞).

1.3.3 Finiteness and Countability

Definition. A set X is finite if it is empty or

(∃ f : X → Zn) :: f is bijective

Definition. A set is infinite if it is not finite.

Definition. Cardinality of an empty set or a non-empty
finite set X is defined as

(i) card(∅) = 0

(ii) card(X) = n if ∃ bijection f : X → Zn

Theorem. Z,R,Q are infinite.

Theorem. The cardinality of a set is unique.

Theorem. The subset of a finite set is finite.

Corollary. For finite set X and Y , there is

X ⊂ Y ⇔ card(X) < card(Y)

Note. A finite operation of an indexed family of sets
means the family of sets is indexed by a finite set.

Theorem. A finite union (Cartesian product) of finite sets
are finite.
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Definition. A set is countably infinite if

(∃ f : X → Z+) :: f is bijective

Definition. A set is countable if it is finite or countably
infinite.

Definition. A set is uncountable if it is not countable.

Theorem. The subset of a countable set is countable.

Corollary. Z+,Q are countably infinite.

Note. A countable operation of an indexed family of
sets means the family of sets is indexed by a countable set.

Theorem. A countable union of countable set is count-
able. A finite product of countable set is countable.

Note. Notation Xn and Xω with X being a set means

Xn ≡
∏
i∈Zn

Xi, Xω ≡
∏
i∈Z+

Xi

Corollary. There does not exist an injective f : P(X)→ X
or a surjective f : X → P(X) where X is a set and P(X) is
the power set.

2 General Topology
This chapter constructs the topological structure on sets.
Default space refers to topological space.

2.1 Topological Space
Definition. Topological space (X,T ) is a non-empty set X
together with a subset T of its power set satisfying

(i) Minimum collection

∅, X ∈ T

(ii) Union Property indexed by any indexing set J⋃
α∈J

Uα ∈ T

(iii) Intersection Property indexed by Zn⋂
i∈Zn

Ui ∈ T

where J is a set of indexes.

Note. Family of sets T of topological space (X,T ) is
the topology of set X.

Note. The indexing set for union property and inter-
section property are different. The indexing set for union
can be an arbitrary indexing set, but that for intersection
can only be a finite and countable set.

Note. Topology is a mathematical structure.
Note. A subset X̃ of X with T is open if X̃ ∈ T
Note. A subset X̃ of X with T is closed if {X X̃ ∈ T
Note. If (X,T1) and (X,T2) are topological space, T1

is coarser than T2 or T2 is finer than T1 if T1 ⊂ T2

Definition. Basis of topology B on set X is a subset of
power set of X satisfying

(i) Covering condition

(∀x ∈ X,∃B ∈ B) :: x ∈ B

(ii) Intersection property

|Bi ∈ B|∧ | x ∈
⋂
i∈Zn

Bi | ⇒ (∃B ∈ B) :: x ∈ B ⊂
⋂
i∈Zn

Bi

Definition. Topology T generated by basis B on set X is
defined as

T ..= {U ⊂ X | (∀x ∈ U,∃B ∈ B) :: x ∈ B ⊂ U }

Note. This means that the topology is generated by
all possible union of basis element. This is valid since the
basis will satisfy the requirement of intersection.

Note. The topology generated by basis is uniquely
determined by the basis. However, there may exist many
bases that generate the same topology generated by basis.

Theorem. Topology generated by basis is a topology.

Proof. There are the following arguments
(i) For ∅ the condition is always true since no ele-

ments are contained in ∅. For X, the first condition
of definition of basis insures X ∈ T

(ii) Consider the union

U =
⋃
i∈J

Ui,Ui ∈ T

By definition, (∀x ∈ U,∃i ∈ J) :: x ∈ Ui

Also, Ui ∈ T ⇒ (∃B ∈ B) :: x ∈ B ⊂ Ui

Thus, (∀x ∈ U,∃B ∈ B) :: x ∈ B ⊂ U
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(iii) Consider the intersection

U =
⋂
i∈Zn

Ui,Ui ∈ T and BI =
⋂
i∈Zn

Bi, Bi ∈ B ⊂ Ui

First, (∀x ∈ U,∀i ∈ Zn,∃Bi ∈ B) :: x ∈ Bi ⊂ Ui

As a consequence, x ∈ BI ⊂ U
By definition, (∃B ∈ B) :: x ∈ B ⊂ BI

Thus, (∀x ∈ U,∃B ∈ B) :: x ∈ B ⊂ U
The arguments show that the topology generated by ba-
sis satisfies the condition of a topology, and thus end the
proof. �

Note. A subset S of power set of X covers X if

(∀x,∃S ∈ S) :: x ∈ S )

Definition. Subbasis E for topology on set X is a subset
of power set of X that covers X.

Note. There are several definitions for subbasis for
topology and not all of them are equivalent.

Definition. Basis B associated with subbasis E on set X
is defined as

B ..= {
⋂
i∈Zn

Ei | Ei ∈ E, n ∈ Z+ }

Note. This means that the basis is generated by all
intersection of subbasis.

Note. The validity of the above definition can be
checked by verifying the properties of basis. The first con-
dition is satisfied since the subbasis covers the set; and the
second condition is satisfied as the basis element is the in-
tersection of subbasis elements.

Note. Topology generated by subbasis refers to topol-
ogy generated by basis associated with the subbasis.

Corollary. Topology generated by subbasis is a topology.

Proof. Apparently. �

Definition. Local base B(x) is a subset ofN(x) satisfying

(∀N ∈ N(x),∃B ∈ B(x)) :: B ⊂ N

Definition. Natural Projection on Cartesian product of
indexed family of sets is defined as

pi : x 7→ mx(i)

where x is the element and mx is the corresponding map in
the definition of Cartesian product.

Definition. Product topology K of Cartesian product of
indexed family of topological space∏

i∈I

(Xi,Ti)

is defined as a topology generated by a subbasis

K ..= span{ img−1(pi)[Oi] | Oi ∈ Ti, i ∈ I }

Note. Box topology is another candidate for the
topology of product set. However, it fails to retain some
good properties such as the continuity (defined later) of
projection map so that it is eliminated.

Note. Element in a topological space is also called
point.

Definition. Induced topology S of a subset X̃ of a topo-
logical space (X,T ) is defined as

S ..= {O ∩ X̃ | O ∈ T }

Note. (X̃,S) forms a topological subspace of (X,T ).

Definition. n-dimensional Euclidean space Rn is defined
as

Rn ..=
∏
i∈Zn

Ri

Note. Usually, the product symbol · in R is omitted.

Definition. Distance of two point x and y in n-dimensional
Euclidean space is defined as

δ(x, y) ..=

√∑
i∈Zn

(xi − yi)(xi − yi)

where xi means mx(i) as is in the definition of Cartesian
product of indexed family of sets.

Note. Hereby, x =
√

y refers to x · x = y.
Note. In the above definition, a notation is used∑

i∈Zn

ψi
..= ψn +

∑
i∈Zn−1

ψi ,
∑
i∈Z1

ψi = ψ1

Definition. ε-open ball of point p in n-dimensional Eu-
clidean space is defined as

B(p, ε) ..= { q | δ(p, q) < ε }

where ε ∈ R.
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Definition. Usual topology of n-dimensional Euclidean
space is the topology generated by subbasis being the set
of all open balls.

Definition. Neighbourhood N at point x of topological
space (X,T ) is a subset of X satisfying

(∃O ∈ T ) :: x ∈ O ⊂ N

Note. Open neighbourhood N is a neighbourhood
that is open.

Definition. Neighbourhood system N(p) of point p of a
topological space is the set of all neighbourhood of the
point.

Theorem. Subset U ⊂ X is open⇔ (∀x ∈ U) :: U ∈ N(x)

Proof. There are the following arguments
(i) If U ∈ T , then (∀x ∈ U,∃U ∈ T ) :: x ∈ U ⊂ U

(ii) If (∀x ∈ U) :: U ∈ N(x), then

U =
⋃
x∈U

Ux ∈ T

where Ux ∈ T satisfies x ∈ Ux ⊂ U
These arguments end the proof. �

Definition. Map f : X → X′ of topological space (X,T )
and (X′,T ′) is continuous if

(∀U′ ∈ T ′) :: img−1( f )[U′] ∈ T

Note. Map f is C0 means it is continuous.

Definition. Map f : X → X′ of topological space (X,T )
and (X′,T ′) is continuous at point x ∈ X if

(∀ f (x) ∈ U′ ∧ U′ ∈ T ′,∃U ∈ T ) :: x ∈ U ∧ f [U] ⊂ U′

The next theorem needs to invoke term “if and only
if” which means ⇔. Proving ψ ⇔ ϕ is usually divided
into proving ψ ⇒ ϕ and ϕ ⇒ ψ. The former is called
Sufficiency and the latter is called Necessity.

Theorem. Map f is continuous if and only if it is contin-
uous at every point in domain.

Proof. There are the following arguments
(i) Sufficiency. Provided f is continuous. Then ∀x ∈

dom( f ), suppose f (x) ∈ O′ ∧ O′ ∈ T ′, there is

(∃img−1( f )[O′] ∈ T ) ::

x ∈ img−1( f )[O′]∧img( f )[img−1( f )[O′]] ⊂ O′

Thus, f is continuous at every point in domain.

(ii) Necessity. Provided f is continuous at every point
in domain. Suppose O′ ∈ T ′

If O = ∅, then img−1( f )[O] = ∅ ∈ T

If O , ∅, then

(∀x ∈ img−1( f )[O′]) :: f (x) ∈ O′∧ O′ ∈ T ′

thus (∃U ∈ T ) :: x ∈ U ⊂ img−1( f )[U]
which means

(∀x ∈ img−1( f )[O′]) :: img−1( f )[O′] ∈ N(x)

therefore img−1( f )[O′] ∈ T
These arguments end the proof �

Corollary. The composite f ◦ g of two continuous map f
and g is continuous.

Corollary. Restriction of a continuous map is continuous.

Definition. Homeomorphism from topological space
(X,Tx) to (Y,Ty) is a map f : X → Y satisfying

(i) Map f is bijective

(ii) Map f and f −1 are continuous

Note. A homeomorphism is also called homeomor-
phic map.

Definition. Topological space (X,Tx) to (Y,Ty) are home-
omorphic to each other if there exists a homeomorphism
in between.

Theorem. The inverse of homeomorphism is a homeomor-
phism.

Theorem. The composite of homeomorphisms is a home-
omorphism.

2.2 Topological Properties
Connotation. Topological Property is a predicate on
topological space satisfying

ψX ⇔ ψY

where X, Y are two homeomorphic topological space.

Note. Topological property is also called topological
invariant.
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2.2.1 Separation

Definition. The sequence {xi} of set X is a map {xi} :
Z+ → X where x ∈ X and i ∈ Z+.

Definition. The limit of a sequence {xi} is defined as

lim
i→∞

xi
..= x⇔ (∀U ∈ N(x),∃nc ∈ Z+) :: i > nc ⇒ xi ∈ U

Note. That the limit of sequence {xi} is x is also
phrased that {xi} converges to x.

Note. The sequence is convergent if it has a limit.

Definition. Point x is the limit point of subset X̃ of space
(X,T ) if

(∀N ∈ N(x)) :: N ∩ X̃ ∩ {X̃{x} , ∅

Definition. Space (X,T ) is Fréchet or T1 if

(∀x , y ∈ X,∃U ∈ N(x)) :: y < U

Definition. Space (X,T ) is Hausdorff or T2 if

(∀x , y ∈ X,∃Ux ∈ N(x),Uy ∈ N(y)) :: Ux ∩ Uy = ∅

Theorem. If (X,T ) is Hausdorff, then a sequence of X
converges to no more than one point in X.

2.2.2 Countability

Definition. Subset X̃ of space (X,T ) is dense in X if
cls(X̃) = X.

Definition. A topological space is first-countable if every
point of it has a countable local base.

Definition. A topological space is second-countable if it
has a countable base.

Theorem. The subspace of first-countable (second-
countable) space is first-countable (second-countable).

Theorem. The finite product of first-countable (second-
countable) space is first-countable (second-countable).

2.2.3 Connectedness

Definition. Closure cls(S ) of a subset S of topological
space (X,T ) is defined as

cls(S ) ..=
⋂
α∈I

X̃α | S ⊂ X̃α∧ X̃α ∈T

Definition. Interior int(S ) of a subset S of topological
space (X,T ) is defined as

int(S ) ..=
⋃
α∈I

X̃α | S ⊃ X̃α ∈T

Definition. Boundary ∂S of a subset S of topological
space (X,T ) is defined as

∂S ..= cls(S ) ∩ {Xint(S )

Theorem. Set X and ∅ are both closed and open in topo-
logical space (X,T ).

Definition. Topological Space (X,T ) is connected if X
and ∅ are the only set that is both open and closed.

Theorem. Topological Space (X,T ) is connected if

(@{U,V} ⊂ T ) ::{U,V} is a partition

Note. Symbol @ refers to ¬∃.
Note. This theorem explains the reason for the name

connectedness.

Theorem. The union of connected subspaces of a topolog-
ical space is connected if their intersection is non-empty.

Theorem. The image of a connected space under a con-
tinuous map is connected.

Proof. There are the following arguments:
For continuous map f : X → Y with (X,T ) connected,
assume that img[ f ] is not connected, i.e.

(@{U,V} ⊂ Timg[{]) :: U ∪ V = img(X)

there will be

f −1[U] ∩ f −1[V] is a partition ∧ f −1[U], f −1[V] ∈ T

which indicates X is not connected and contradicts the pre-
vious condition. Therefore, img(X) is connected. �

Corollary. Connectedness is a topological property.

Proof. Apparently. �
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2.2.4 Compactness
Definition. Family of sets C is an open covering of space
(X,T ) if it covers X and C ⊂ T .

Definition. Topological space (X,T ) is compact if every
open covering of X has a finite subset that also covers X.

Theorem. Every closed subspace of a compact space is
compact.

Theorem. Every compact subspace of a Hausdorff space
is closed.

Theorem. The image of a compact space under a contin-
uous map is compact.

Proof. For continuous map f : X → Y , compact space
(X,T ), n ∈ Z+ and an open covering C of img(X)

(∃·�f −1[C] ⊂ f −1[C]) :: |card(·�f −1[C]) = n|∧|·�f −1[C] covers X|

Thus, f [·�f −1[C]] is a finite open covering of img(X) since

(∀y ∈ img(X),∃x) :: f (x) = y

which ends the proof. �

Note. Symbol f [F ] of a family of sets refers to

f [F ] ..= { f [F] | F ∈ F }

Theorem. Compactness is a topological property.

Proof. Apparently. �

Theorem. For bijective continuous function f : X → Y , if
X is compact and Y is Hausdorff, then f is a homeomor-
phism.

Theorem. The product of finite compact spaces is com-
pact.

3 Measure Theory
This chapter cares about general theory of measure struc-
ture, which enables the construction of integration on sets.
Default space is measure space and default function is set
function.

3.1 Measure on Measurable Sets
This section concerns the measurable sets and the measure
on them.

3.1.1 Ring and Algebra of Sets

Definition. Ring of sets R(X) is a subset of power set
P(X) of non-empty X satisfying

(∀E1, E2 ∈ R(X)) :: |E1∪E2 ∈ R(X)| ∧ |E1 ∩ {XE2 ∈ R(X)|

Definition. Algebra of sets A(X) is a ring of set X satis-
fying X ∈ A(X).

Note. Ring and algebra of sets are not ring or alge-
braic structure.

Note. Ring and algebra of sets are mathematical
structures.

Definition. A family of sets F is closed under binary op-
eration f if

(∀U1,U2 ∈ F ) :: U1 f U2 ∈ F

Theorem. Ring (algebra) is closed under intersection.

Theorem. Empty set is in ring or algebra of sets.

Theorem. For a subset E of power set P(X), there is
unique ring (resp algebra) R(E) satisfying

(i) Inclusion E ⊂ R(X)
(ii) Minimum (∀R(X) ⊃ E) ::R(E) ⊂ R(X)

Note. Unique means for every R(E) and R′(E), there
is R(E) = R′(E).

Definition. Family of sets R(E) is the σ-ring (resp σ-
algebra) generated by E

Definition. ring (resp algebra) Rσ(X) is a ring (resp al-
gebra) satisfying⋃

i∈Z+

Ei ∈ Rσ(X) where Ei ∈ X

Theorem. σ-ring (resp σ-algebra) is closed under count-
able intersection.

Note. Countable intersection refers to intersection of
family of sets indexed by Z+.

Theorem. For a subset E of power set P(X), there is
unique σ-ring (resp σ-algebra) Rσ(E) satisfying

(i) Inclusion E ⊂ Rσ(X)
(ii) Minimum (∀Rσ(X) ⊃ E) ::Rσ(E) ⊂ Rσ(X)

Definition. Family of sets Rσ(E) is the σ-ring (resp σ-
algebra) generated by E
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3.1.2 Measure on Rings of Sets

Definition. Sequence {xi} of R tends to infinity if

(∀ε > 0,∃nc ∈ Z+) :: i > nc ⇒ xi > ε

Definition. Numerical infinity ∞ is the limit of a se-
quence {xi} of R which tends to infinity, i.e.

lim
i→∞

xi = ∞

Definition. Minus numerical infinity −∞ is the limit of
sequence {−xi} with {xi} tending to infinity.

Definition. Extended real number line R̂ is defined as

R̂ ..= R ∪ {−∞,∞}

Definition. Series is the addition of sequence {xi} of R de-
fined as ∑

i∈Z+

xi
..= lim

n→∞

∑
i∈Zn

xi

Definition. Set function of family of sets F is a map
µ : F → R.

Definition. Measure on ring R(X) is a set function of
R(X) satisfying

(i) Non-negative (∀E ∈ R(X)) :: µ(E) > 0
(ii) Countable Additive

µ(
⋃

i∈Z+

Ei) =
∑
i∈Z+

µ(Ei)

with sequence {Ei} satisfying

(∀i, j ∈ Z+) :: Ei ∩ E j = ∅,
⋃

i∈Z+

Ei ∈ R(X)

Theorem. µ(∅) = 0.

Definition. Interval box of R is a set

I ..= { (x, y] | x, y ∈ R }

Note. In the above definition, notation (a, b] refers to

(a, b] ..= { x ∈ R | a < x 6 b }

Definition. Usual Measure m on ring R(I) is defined as

m(E) ..=
∑
i∈Zn

m(Ii), m(I) ..= y − x

where I = (x, y] ∈ I and {Ii} is a partition of E ∈ R(I)
with Ii ∈ I.

Note. Value y is irrelevant to x if map f : x 7→ y is a
constant map.

Theorem. Value m(E) is irrelevant to the partition of E.

Proof. For different partition Ii, Ji of set E ∈ R(I), there
is Gi j ≡ Ii ∩ J j ∈ I. Thus

∑
i∈Zn

m(Ii) =
∑
i∈Zn

Ñ∑
j∈Zn

m(Gi j)

é
=
∑
j∈Zn

Ñ∑
i∈Zn

m(Gi j)

é
=
∑
j∈Zn

m(J j)

which ends the proof. �

Definition. Extended set function of family of sets F is a
map µ : F → R̂.

Definition. σ-covering of ring R(X) is defined as

Cσ(R) ..= {E ⊂ X | (∃{Ei}) :: E⊂
⋃

i∈Z+

Ei }

Lemma. σ-covering is a σ-ring.

Definition. Outer measure µ̂ generated by µ is an ex-
tended set function on σ-covering Cσ(R) defined as

µ̂(E) ..= inf {
∑
i∈Z+

µ(Ei) | | E∈R | ∧ | E⊂
⋃

i∈Z+

Ei }

Theorem. The restriction to R(X) of µ̂ satisfying ˜̂µ|R = µ.

Definition. Set E ∈ Cσ(R(X)) is µ̂-measurable if

(∀F ∈ Cσ(R)) :: µ̂(F) = µ̂(F∩E) + µ̂(F∩{XE)

Note. Set of all µ̂-measurable sets is denoted by R̂µ

Theorem. R̂µ is a σ-ring, and R̂µ ⊃ Rσ(X).

Definition. Measure on R̂µ is the outer measure µ̂ gener-
ated by µ.

Definition. Measure on R̂µ is the extension of measure µ
on R.

Definition. Measure ˜̂µ on Rσ(X) is the restriction of mea-
sure on R̂µ.

Theorem. Measure on Rσ(X) is unique, i.e. for ˜̂µ1, ˜̂µ2 on
Rσ(X)

(∀E ∈ R) :: ˜̂µ1(E) = ˜̂µ2(E)⇒ ˜̂µ1 = ˜̂µ2
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Note. According to the theorem above, the measure
on ring will be from now on automatically extended to the
measure on the corresponding σ-ring.

Definition. Lebesgue measure m is the usual measure on
L ≡ R̂m(I).

Note. All measures are mathematical structures.

Definition. Measurable space (X,R) is a set X together
with a ring R(X).

Definition. Measure space (X,R, µ) is a measurable
space together with a measure µ on ring R.

If there is also topology T on set X, then the measure
structure can be made compatible with topological struc-
ture through the following way.

Definition. Borel σ-algebra Bσ refers to Tσ(X) which is
the σ-algebra generated by topology T .

Definition. Borel space refers to (X,Tσ, µ).

Definition. Map ϕ : X → Y of measurable space (X,U)
and (X′,V) is measurable if

(∀E ∈ V) ::ϕ−1[E] ∈ U

Definition. Measure isomorphism ϕ : X → Y is a mea-
surable bijection satisfyingU = ϕ−1[V]

Note. Hereby, ϕ−1[V] ..= {ϕ−1[E] | E ⊂ V}
Note. Two measurable spaces are isomorphic to each

other if there is a measure isomorphism in between.

Theorem. Measure isomorphism between Borel spaces is
continuous.

Definition. Measure-preserving transformation ϕ : X →
Y of space (X,U, µ) and (Y,V, ν) is a map satisfying

(∀E ∈ U, F ∈ V) ::

(i) ϕ[E] ∈ V, ϕ−1[F] ∈ U
(ii) ν(ϕ[E]) = µ(E), µ(ϕ−1[F]) = ν(F)

3.1.3 Product Measure

Definition. Cartesian product F × G of family of sets F
and G is defined as

F × G ..= {F ×G | F ∈ F ,G ∈ G}

Definition. Product measurable space of (X,U) and
(Y,V) refers to (X×Y,R(U]V)).

Note. U]V ..= {A × B | A ∈ U, B ∈ V}.

Definition. Product measure µ× ν on (X×Y,R(U×V)) of
(X,U, µ) and (Y,V, ν) is defined as

µ×ν (E) ..=
∑
i∈Zn

µ(Xi) · ν(Yi)

where E ∈ R(U×V) and {Xi×Yi} is a partition of E with
Xi ∈ U and Yi ∈ V.

Note. In extending the product measure to the corre-
sponding σ-ring, there is

0 · ∞ ..= 0

Note. The above relation is defined solely in product
measure.

Definition. Product measure space is a product measur-
able space together with product measure.

Definition. Usual measure on Rn is the product measure
of usual measure on R.

3.2 Integral of Measurable Function
This section deals with measurable functions and their in-
tegration.

3.2.1 Lebesgue Integral

Definition. Set function f on E ⊂ X of measurable space
(X,R) is measurable if

(∀x, y) :: f −1[x, y) ∈ R

Definition. Set E ⊂ X of space (X,R, µ) is a measurable
set if X ∈ R.

Definition. Measurable set E is finite if µ(E) ∈ R.

Definition. Measurable set E is σ-finite if

E ⊂
⋃

i∈Z+

Ei, µ(Ei) ∈ R

Definition. Set function f is bounded if

(∃(l, u)) :: img( f ) ⊂ (l, u)
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Integral of Bounded Function with Finite Measure
Condition. Let (X,R, µ) be a measure space, E ∈ R

and µ(E) ∈ R, f be a bounded set function on E with
img( f ) ⊂ (l, u).

Definition. Function f is Lebesgue integrable if

(∃S∈R) ::(∀δ > 0,∃ ε > 0) ::

max{µ([xi, xi+1))}<δ⇒ {
∑
i∈Zn

ξiµ( f −1[xi, xi+1)) − S }2<ε

where {[xi, xi+1)} is a partition of [l, u] with cardinality n,
and xi < ξi < xi+1.

Definition. Lebesgue integral of f on E with µ is the num-
ber S in the above definition, i.e.∫

E
f dµ = S

Theorem. All bounded measurable function under the
above condition is integrable.

Integral of Function with σ-Finite Measure
Condition. Let (X,R, µ) be a measure space, E ∈ R is
σ-finite.

Definition. Maximum and minimum of sequence {xi} is
defined as

max{xi} = xk ::(∀xi) :: xi 6 xk

min{xi} = xk ::(∀xi) :: xi > xk

Definition. Positive part f + and negative part f − of func-
tion f are functions satisfying

f + ..= max{ f , 0}, f − ..= max{− f , 0}

Theorem. All functions satisfy f = f + − f −.

Definition. Monotonic covering with finite measure of
set E is a sequence {Ei} with µ(Ei) ∈ R satisfying

Ei ⊂ Ei+1, E =
⋃

i∈Z+

Ei

Definition. Lebesgue integral of non-negative function f
on E is defined as∫

E
f dµ ..= lim

n→∞

∫
En

[ f ]n dµ

where non-negative refers to f [E] ⊂ [0,+∞), {En} is
a monotonic covering with finite measure and [ f ]n ≡

min{ f , n}.

Theorem. Lebesgue integral is irrelevant to the mono-
tonic covering with finite measure.

Definition. Lebesgue integral of function f on E is de-
fined as ∫

E
f dµ ..=

∫
E

f + dµ −
∫

E
f − dµ

Integration by Substitution
Theorem. Let ϕ be measure-preserving transformation
between space (X, µ) and (Y, ν). That function f on E ⊂ X
is integrable is equivalent to that function f ◦ ϕ is inte-
grable, and ∫

E
f (y) dν(y) =

∫
ϕ−1[E]

f (x) dµ(x)

Note. “Be equivalent to” refers to “be the necessity
and sufficiency of”.

3.2.2 Multiple Integral
Condition. Let (X×Y, R(U ]V), µ×ν) be product space,
E = A × B ∈ U]V, B0 ⊂ B and ν(B0) = 0.

Definition. Multiple integral of function f (x, y) inte-
grable on E is defined as∫

E
f (x, y) dµ × ν(x, y)

Definition. Predicate ψ( f ) of function f on E of space
(X, µ) is true almost everywhere if

(∃E0, µ(E0) = 0) ::ψ( f |E∪{X E0
) = true

where f |E∪{X E0
is the restriction of f to E ∪ {XE0.

Definition. Function f (x, y) on A×B is double integrable
if there is an integrable function h(y) on B satisfying

h(y) =

∫
A

f (x, y) dµ(x)

is true almost everywhere on B − B0.

Definition. Double integral of double integrable function
f (x, y) is defined as∫

E
f (x, y) dµ(x) dν(y) =

∫
B

h(y) dν(y)

Theorem. The following predicates are equivalent:

(i) Function f is integrable on E.
(ii) Function f is double integrable on A × B.

(iii) Function f is double integrable on B × A.
and ∫

E
f dµ × ν =

∫
E

f dµ dν =

∫
E

f dν dµ
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4 Real & Complex Analysis
This chapter concerns analysis of number sets.

4.1 Exponentiation
Definition. Absolute value of real number x is defined as

|x| = max{x, 0} + max{−x, 0}

Note. Real number x is positive if x > 0.
Note. Real number x is negative if x < 0.

Definition. Cauchy sequence of rational number is a se-
quence {ci} with ci ∈ Q satisfying

(∀ε > 0,∃l > 0) ::(∀n,m > l) :: |cn − cm| < ε

Theorem. Every real number can be a limit of some
Cauchy sequence.

Definition. Power of x ∈ R to positive integer n is defined
as

xn ..= x · xn−1, x0 ..= 1

Definition. Power of x ∈ R to negative integer n is defined
as

x−n ..= (xn)−1

Note. The above exponentiation is defined for all real
numbers. However, the following exponentiation is valid
only for positive real numbers.

Definition. Power of x ∈ R+ to rational number 1/n is
defined as

x
1
n ..= sup{y ∈ R | |y > 0| ∧ |yn 6 x| }

Note. R+ ≡ (0,+∞).

Definition. Power of x ∈ R+ to rational number 1 = m/n
is defined as

xq ..= (x
1
n )m

Definition. Power of x ∈ R+ to real number α is defined
as

xα ..= lim
i→∞

xqi , lim
i→∞

qi = α

Theorem. Power xα is unique, i.e. for Cauchy sequences

lim
i→∞

qi = α = lim
i→∞

q′i = α′

the corresponding power xα = xα
′

.

4.2 Differential Calculus
This section elaborates differential calculus. Default func-
tion is function of n variable.

4.2.1 Limit and Derivative

Definition. Function is a map to a number set.

Note. Set of all function between set X and Y is de-
noted by F (X,Y) with Y being Cartesian product of num-
ber field.

Definition. Real-valued function is a map f : X → R.

Definition. The binary operation ϕ already defined on set
Y is defined pointwise for map f , g of X and Y if

[ fϕg](x) ..= f (x)ϕ g(x)

Note. The addition and multiplication of F (X,R) is
defined pointwise.

Definition. Function of n variable (n-ary function) f is
a map f : R̃n → R where R̃n ⊂ Rn.

Note. Function f ∈ F (Rn,Rm) can be regarded as m
functions of n variable. Thus, properties of f is the same
as that of these functions.

Definition. Limit of function f (x) at point x0 is defined as

lim
x→x0

f =q⇔ (∃q ∈ R) ::(∀{xi}, lim
i→∞

xi = x0) :: lim
i→∞

f (xi) = q

where {xi} is a sequence of Rn.

Definition. Kronecker delta δi
j is a map δ : I× J → {0, 1}

defined as

i = j⇒ δi
j = 1, i , j⇒ δi

j = 0

Definition. Partial derivative of function f (x) with respect
to coordinate xi at point x0 is defined as

∂

∂xi f
∣∣∣∣
x0

..= lim
h→0

1
h

( f (x + δ(h)i) − f (x))

where δ(h)i is a point in Rn defined as

δ(h)i
j = hδi

j

Note. For function of one variable, the partial deriva-
tive degenerates to ordinary derivative

d
dx

f
∣∣∣∣
x0

≡
∂

∂x
f
∣∣∣∣
x0
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Theorem. The partial derivative of composite function
f ◦ g satisfy

∂ f ◦ g
∂xi =

∑
j∈Zn

∂ f (u)
∂u j

∂g j(x)
∂xi

where u = g(x).

Note. If the partial derivative of function f exists at
every point in domain, it can be overloaded as a derivative
function

∂

∂xi f (y) ..=
∂

∂xi f
∣∣∣∣
y

Note. The partial derivative can be overloaded as a
map ∂/∂xi : F (R̃n,R)→ F (R̃n,R).

Definition. Function f is continuously differentiable if
all its partial derivatives exist and are continuous.

Note. If the partial derivative of f is differentiable, it
can also have partial derivative. Usually, if valid, regarding
derivative as a map, there is derivative of n order

∏
i∈Zn

Å
∂

∂xi

ãmi

f ..=
∏
i∈Zn

∏
l∈Zmi

Å
∂

∂xi

ãl
f

The multiplication should be understood as composite of
maps.

4.2.2 Special Functions

Definition. n times chain product of a sequence {xi} is
defined as ∏

i∈Zn

xi
..= xn

∏
i∈Zn−1

xi ,
∏
i∈Z1

xi = x1

Definition. Factorial n! is defined as

n! ..=
∏
i∈Zn

i

Definition. Constant e is defined as

e ..= lim
n→∞

Å
1 +

1
n

ãn

Definition. Constant π is defined as

π ..=

∫
[−1,1]

(1 − x2)−
1
2 dx

Definition. Function sin(x) is defined as

sin(x) ..= x +
∑
n∈Z+

(−1)nx2n+1

(2n + 1)!

Note. Function cos(x) is the derivative of sin(x).

Definition. Function exp{x} is defined as

exp{x} ..= 1 +
∑
n∈Z+

xn

n!

Note. Function ln(x) is the inverse function of exp{x}.

4.2.3 Taylor Expansion

Definition. Function f is Cr, r ∈ Z+ if it is continuously
differentiable up to order r, specially, C0 refers to contin-
uous, C∞ refers to (∀k ∈ N) :: Ck.

Note. Function f is smooth if it is C∞.
The next theorem is on the Taylor expansion of

smooth function.

Theorem. Any smooth function f can be expanded as

f (x) = f (a) +
∏
i∈Zn

∑
mi∈Z+

∏
j∈Zn

(x j − a j)m j

m j!

∏
k∈Zn

Å
∂

∂xk

ãmk

f

The next is about the mean value theorem.

Theorem. Any C1 function defined on an open connected
set satisfy

f (y) − f (x) ..=
∑
i∈Zn

∂ f
∂xi [(1 − c)x + cy] · (yi − xi)

4.3 Complex Analysis
4.3.1 Complex Number Field

Definition. Complex number set C = (R2,+, ·) is a set
with

(i) Addition

(x1, y1) + (x2, y2) ..= (x1 + y1, x2 + y2)

(ii) Multiplication

(x1, y1) · (x2, y2) ..= (x1y1 − x2y2, x1y2 + x2y1)

where (x1, y1), (x2, y2) ∈ C.

Note. Complex number is the element of complex
number set.

Note. For z = (x, y) ∈ C, real part Re(z) ..= x, imagi-
nary part Im(z) ..= y.

Theorem. Complex number set is a field.
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Definition. Imaginary unit i satisfy i2 = −1.

Note. Utilizing imaginary unit, every z ∈ C can be
expressed as z = x + y i, and follow the ordinary operation
in R.

Definition. Complex conjugate z∗ of z = x + y i ∈ C is
defined as z∗ ..= x − y i.

The next theorem introduces Euler’s formula.

Theorem. There is the following relationship

eix = cos x + isin x

4.3.2 Complex Functions

Definition. Complex-valued function f is a map f : X →
C.

Note. Every complex-valued function f can be ex-
pressed in the form of real part and imaginary part

f (x) = u(x) + iv(x)

Note. The set of all complex-valued function is de-
noted by F (X,C).

Note. The addition and multiplication of complex-
valued function is defined pointwise.

Definition. Conjugate function of complex-valued func-
tion f is defined as

f ∗(x) ..= [ f (x)]∗

Definition. Complex function is a complex-valued func-
tion f : D→ C where D ⊂ C.

Definition. Derivative of complex function f at limit point
z0 ∈ dom( f ) is defined as

∂

∂z
f
∣∣∣∣
z0

..= lim
z→z0

f (z) − f (z0)
z − z0

Note. Complex function is differentiable at z0 if the
derivative exists.

Definition. Complex function f is holomorphic if it is dif-
ferentiable at every point in domain.

Note. Complex function f is holomorphic on S ⊂
dom( f ) if there is open set U of C such that S ⊂ U ⊂

dom( f ) and f̃ |U is holomorphic.
Note. Complex function f is holomorphic on z0 ∈

dom( f ) if there is open set U of C such that z0 ∈ U ⊂

dom( f ) and f̃ |U is holomorphic.
Note. The derivative of holomorphic complex func-

tion can induce a derivative function as
∂

∂z
f (ξ) =

∂

∂z
f
∣∣∣∣
ξ

The next theorem is on the Cauchy-Riemann condi-
tion for the existence of derivative of complex function.

Theorem. That complex function f (x, y) = u(x, y) +

v(x, y) i is differentiable at z0 ∈ int(dom( f )) is equivalent
to that real and imaginary part of f is continuously differ-
entiable and satisfy

∂u
∂x

∣∣∣∣
z0

=
∂v
∂y

∣∣∣∣
z0

,
∂u
∂y

∣∣∣∣
z0

= −
∂v
∂x

∣∣∣∣
z0

Definition. Point z0 is a singularity of complex function f
if z0 < dom( f ) or f is not holomorphic at z0.

Definition. Point z0 is an isolated singularity of complex
function f if there is deleted ε-open ball B̊(z0, ε) ⊂ dom( f )
and f is holomorphic on B̊(z0, ε).

Note. Deleted ε-open ball refers to B(z0, ε) ∩ {X{z0}

4.3.3 Integral of Complex Functions
Definition. Line of Rn is a map l : [a, b]→ Rn and a , b.

Note. A curve can be regarded as n real-valued func-
tions xi(t).

Definition. Loop is a curve satisfying l(a) = l(b).

Definition. Line l is Cr if

(i) All xi(t) is Cr

(ii) If it is a loop, there is

(∀i ∈ Zn, k ∈ Zr) lim
t→a+

xi(t) = lim
t→b−

xi(t)

Note. Partial limit

lim
x→x+

0

f (x) (resp lim
x→x+

0

f (x))

is to add condition xi > x0 (resp xi < x0) to the sequence
used to define limit.

Note. Line l is simple if

(∀t, t′∈ [a, b]) :: l(t) = l(t′)⇒ | t = t′ | ∨ | {t, t′} ⊂ ∂[a, b] |
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Definition. Line integral of f ∈ F (Rn,R) along line l is
defined as

∫
l

f (x) dxi ..=

∫
[a,b]

f (x(t))
dxi

dt
(t) dt

Definition. Line integral of f ∈ F (C,C) along line l is
defined as∫

l
f dz ..=

∫
l

u dx − v dy + i
∫

l
v dx + u dy

Note. Loop integral is a line integral with the line
being a loop.

Definition. Residue of complex function f at isolated sin-
gularity z0 ∈ cls(dom( f )) is defined as

Res( f , z0) ..= R ::(∃F) ::
∂

∂z
F(ξ) = f (ξ) −

R
ξ − z0

where F(z) is a complex function on B̊(z0, ε).

Note. Euler’s formula allows to express every com-
plex number as z = ρeiα with modulus ρ = z∗z and argu-
ment α.

Definition. Principal argument Arg(z) of complex num-
ber z , 0 is defined as

Arg(z) = α :: |α ∈ (−π, π] | ∧ |z = ρeiα |

Definition. Line l is counter-clockwise if

(∀t0 ∈ [a, b]) ::
d
dt

∣∣∣∣
t0
Arg(l(t)) > 0

Definition. Set U is enclosed by loop l if l = ∂U.

Definition. Set U ⊂ C enclosed by loop l is simply con-
nected if both U and {CU are connected.

The next theorem elucidates the residue theorem.

Theorem. For complex function f on U∩{CS with U ⊂ C
being a simply connected open set and S being the set
of singularities of f , smooth line l in U ∩ {CS enclosing
n ∈ Z+ singularities {pi}n, there is∮

l
f (z) dz = 2π i

∑
i∈Zn

Res( f , pi)

4.3.4 Fourier Transform
Definition. Fourier transform of f ∈ F (Rn,R) of xi is
defined as

Fi[ f ](k) ≡ f̆i(k) =
1
√

2π

∫
f (x)eiki xi

dxi

Note. The integral range is omitted if it integrates
over the domain.

Definition. Spectrum of f (x) ∈ F (Rn,R) of xi is the
Fourier transform f̆i(k).

Definition. Fourier inverse transform of spectrum f̆ (k) is
defined as

F−1
i [ f ](x) ≡ f (x) =

1
√

2π

∫
f̆i(k)eiki xi

dki

5 Functional Analysis
This chapter elaborates linear algebra, metric space and
non-linear functional analysis.

5.1 Linear Space
This section introduced basics of linear space. Default
space is linear space.

Definition. Linear space V over field F is a non-empty
set with addition + : V ×V → V and scalar multiplication
· : F × V → V satisfying

(i) Addition Property (V,+) is an abelian group
(ii) Identity Property

(∀v ∈ V) :: e · v = v

where e is the identity element of F
(iii) Associative Property

(∀κλ ∈ F, v ∈ V) ::(κλ)v = κ(λv)

(iv) Distributive Property

(∀κ ∈ F, u, v ∈ V) :: κ · (u + v) = κ · u + κ · v

(∀κ, λ ∈ F, v ∈ V) ::(κ + λ) · v = κ · v + λ · v

Note. Linear space is a mathematical structure (linear
structure).

Note. Linear space is also phrased vector space.
Note. Usually, the product symbol · is omitted.
Note. Real (resp complex) vector space is a vector

space over R (resp C).
Note. Set Rn forms a linear space with addition as

addition and scalar multiplication as multiplication.
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Definition. Vector is the element of a vector space.

Definition. Linear subspace U of space V is a subset of
V satisfying

(i) Additive Identity 0 ∈ U
(ii) Addition (∀u, v ∈ U) :: u + v ∈ U

(iii) Scalar multiplication (∀κ ∈ F, u ∈ U) :: κu ∈ U

Note. Condition q is unique for predicate ψ|q if
ψ|q = ψq′ = true⇒ q = q′.

Definition. Direct sum of subspaces U j, j ∈ J is a space
defined as

(∀v ∈
⊕
j∈J

U j,∃!u j ∈ U j) :: v =
∑
j∈J

u j

Note. Symbol ∃! refers to “∃ unique”.

Definition. List {xi}n of set X is a finite subset of sequence
{xi} with cardinality being n.

Definition. List {vi}n of space V is linearly independent if

κivi = 0⇒ κi = 0 where κi ∈ F

Note. Here, Einstein’s summation convention has
been introduced, i.e.

x jy j ≡
∑
j∈J

x jy j

Definition. Linear basis of a vector space V is a linearly
independent list {ei}n satisfying

(∀v ∈ V) :: v =
∑
i∈Zn

κiei

Definition. Element κi ∈ F is the coefficient of vector v
on basis {ei}.

Note. The coefficient of vector v can be overloaded
as a projection map κi : v 7→ κi.

Definition. Dimension of vector space V is defined as the
cardinality of its linear basis, i.e.

dim V = card({ei}n)

Definition. List {vi}n spans space V if it is a linear basis
of V , i.e.

V = span{vi}n

Definition. Space V is finite dimensional if dim V ∈ Z+.
Space V is infinite dimensional if it is not finite dimen-
sional.

5.2 Linear Map
This section concerns the linear map between linear spaces
and its corresponding matrix. Default space is finite di-
mensional linear space. Default map is linear map.

5.2.1 Linear Operator
Definition. Linear map between space V and V ′ of field
F is a map T : V → U satisfying

(i) Additivity (∀v, u ∈ V) :: T (v + u) = T (v) + T (u)
(ii) Homogeneity (∀v ∈ V, κ ∈ F) :: T (κv) = κT (v)

Note. Linear map is also phrased linear operator.

Definition. Linear isomorphism of space V and V ′ is a
bijective linear map.

Definition. Space V and V ′ are isomorphic if there exists
a linear isomorphism in between.

Note. The set of all linear map between space V and
W is denoted by L(V,W).

Note. Set L(V,V) is denoted by End(V), element of
End(V) is the endomorphism of space V .

Note. Linear map T is an automorphism if it is both
an isomorphism and an endomorphism. The set of all au-
tomorphism is denoted by Aut(V).

Definition. Addition of map T and S on space V is defined
pointwise as

(T + S )(v) ..= T (v) + S (v)

Definition. Scalar multiplication of map T on space V is
defined pointwise as

(κT )(v) ..= κ(T (v))

Definition. Composite of map T and S on space V is de-
fined as

TS (v) = T ◦ S (v)

Definition. Operator T ∈ L(V,W) is invertible if

(∃S ∈ L(W,V)) :: TS = idV

Theorem. Operator S in the above definition is unique.

Proof. If S , S ′ are the matrix satisfying TS = TS ′ = idV ,
then

S = S idV = S (TS ′) = (S T )S ′ = idVS ′ = S ′

which ends the proof. �
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Definition. Inverse T−1 of an invertible operator is an op-
erator satisfying T−1T = idV .

Definition. Eigenvalue and Eigenvector of operator T ∈
End(V) is λ ∈ F and v ∈ V satisfying

(∃v ∈ V) ::(T − λidV )v = 0

5.2.2 Matrix

Definition. m × n Matrix (ai
j) of field F is a list of F in-

dexed by I, J with cardinality being m and n respectively.

Note. Entry is the element of a matrix.

Definition. Matrix (ti
j) of linear map T between space V

and V ′ is a list of field F

(ti
j) = κ′i(T (e j))

where {e j} is the basis of V and κ′i is the projection map
under basis of V ′.

Definition. Square matrix of order n is a n × n matrix.

Definition. Diagonal matrix is a square matrix satisfying

(∀i, j) :: ai
j = 0

Definition. Identity matrix δi
j is the matrix of identity

map.

Definition. Transpose of a square matrix (ai
j) is a matrix

tsp(a)i
j = a j

i

5.3 Trace and Determinant
Definition. Permutation of Zn is a bijection σ : Zn → Zn.

Definition. Inversions of permutation σ is defined as

inv(σ) ..= card({ (σi, σj) | |σi>σj | ∧ |i< j| })

Definition. Signature of permutation σ is defined as

sgn(σ) ..= (−1)inv(σ)

Definition. Determinant of square matrix A = (ai
j) of or-

der n is defined as

det(A) =
∑
σ∈S n

sgn(σ)
∏
i∈Zn

ai
σ(i)

where S n is the set of all permutation of Zn.

Note. The sum or multiplication over indexing set J
is defined as the sum over any bijective list or sequence of
J, i.e. ∑

x∈J

ϕx
..=
∑
i∈Zδ

ϕxi ,
∏
x∈J

ϕx
..=
∏
i∈Zδ

ϕxi

where δ can be n or +.

Definition. Trace of matrix A = (ai
j) is defined as

tr(A) =
∑
i∈Zn

ai
i

Theorem. If the eigenvalue {λi} of matrix T over field F
satisfy (∀λi) :: λi ∈ F, there will be

det(T ) =
∏
λi∈{λi}

λi, tr(T ) =
∑
λi∈{λi}

λi

5.4 Dual Space
This section concerns the dual space of vector space. De-
fault specific index takes values in Zn where n is the di-
mension.

Definition. Dual vector v∗ of vector space V over field F
is a linear map v∗ : V → F.

Definition. Dual (vector) space of vector space V is the
set of all dual vectors of V .

Definition. Dual space of V over F becomes a vector
space under

(i) Addition

(ω1 + ω2)(v) ..= ω1(v) + ω2(v)

(ii) Scalar multiplication

(κω)(v) ..= κ(ω(v))

where ω,ω1, ω2 ∈ V∗, v ∈ V, κ ∈ F

Theorem. dim(V∗) = dim(V).

Proof. Define list {e∗a} as e∗a(eb) ..= δa
b where {eb} is the

basis of V and δa
b is the identity matrix. There is

(i) List {e∗a} is linearly independent since

κae∗a = 0⇒ κae∗a(eb) = κaδ
a

b = κb = 0

(ii) Any v ∈ V can be expressed as v = vaea and ea

satisfy

ω(ea) = ω(eb)δb
a = ωbe∗b(ea)

where ωb ≡ ω(eb) ∈ F. Thus, ω = ωbe∗b.
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(iii) card({e∗a}) = n.
Thus, the theorem is proved. �

Definition. Dual basis of V∗ is the list {e∗a} in the above
proof.

Definition. Coefficient of ω under basis {e∗a} is ωb in the
above proof.

Theorem. There exists a natural isomorphism between
vector space V and its double dual space V∗∗.

Note. Due to the theorem above, double and even
higher order dual space are not specified.

5.5 Variation Method
This section introduces metric space and normed linear
space as well as constructs the variation operation on Ba-
nach space.

5.5.1 Metric Space

Definition. Distance of a non-empty set R is a map ρ :
R × R→ R satisfying

(i) Positive definite ρ(x, y) > 0
(ii) Non-degenerate ρ(x, y) = 0⇔ x = y

(iii) Triangle inequality ρ(x, y) 6 ρ(x, z) + ρ(y, z)

Definition. Metric space (R, ρ) is a set R with the distance
ρ of R.

Note. Distance is a mathematical structure.
Note. Rn becomes a metric space under the distance

of Rn.

Definition. ε-open ball of point p in metric space is de-
fined as

B(p, ε) ..= { q | ρ(p, q) < ε }

where ε ∈ R.

Definition. Induced topology of metric space Ti is the
topology generated by subbasis being the set of all open
balls.

Note. Metric space becomes a topological space un-
der induced topology.

5.5.2 Normed Linear Space

Definition. Semi-norm of linear space V over field F ∈
{R,C} is a map || · || : V → F satisfying

(i) Positive definite ||x|| > 0
(ii) Homogeneity ||αx|| = |α| · ||x||

(iii) Triangle inequality ||x + y|| 6 ||x|| + ||y||

Note. |α| for α ∈ C is defined as
√
α∗α.

Definition. Norm is a semi-norm satisfying

||x|| = 0⇔ x = 0

Definition. Normed linear space (V, || · ||) is a linear space
V with a norm || · ||.

Note. Norm is a mathematical structure.

Definition. Induced distance of normed linear space is
defined as

ρ(x, y) ..= ||x − y||

Note. Normed linear space becomes a metric space
under induced distance.

Definition. Cauchy sequence in metric space (R, ρ) is a
sequence {ci} satisfying

(∀ε > 0,∃l > 0) ::(∀n,m > l) :: ρ(cn, cm) < ε

Definition. Metric space is complete if all Cauchy se-
quence converges to point within space.

Definition. Banach space is a complete normed linear
space.

5.5.3 Variation on Banach Space

Definition. Functional is a map F : V → F where V is a
linear space and F is real or complex field.

Condition. E and F ∈ {R,C} are Banach spaces, D ⊂ E is
open, F : D→ F, η, ϕ ∈ E, ε ∈ F.

Definition. Functional F is Gâteaux differentiable if

(∀η ∈ E) :: lim
ε→0

1
ε

(F [ϕ + εη] − F [ϕ]) ≡
δF
δϕ
∈ F

Definition. Variation δF of functional F is defined as

δF =
δF
δϕ

δϕ

where δϕ ≡ εη.
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5.6 Inner Product Space
Definition. Inner product (·, ·) of linear space V over field
F ∈ {R,C} is a map (·, ·) : V × V → F satisfying

(i) Additive ( f , g + h) = ( f , g) + ( f , h)
(ii) Homogeneity ( f , cg) = c( f , g)

(iii) Conjugate ( f , g)∗ = (g, f )
(iv) Non-degenerate ( f , f ) = 0⇔ f = 0

where f , g, h ∈ V, c ∈ F.

Definition. Inner product (·, ·) is positive-definite if (∀ f ∈
V) :: ( f , f ) > 0.

Definition. Inner product space is a linear space V with
an inner product (·, ·).

Definition. Inner product · on Rn is defined as x ·y = xiyi.

Definition. Induced norm on inner product space is de-
fined as

|| f || ..=
√

( f , f )

Note. Inner product space becomes a normed linear
space under the induced norm.

Note. Inner product (·, ·) naturally induced an anti-
linear injection ν : V → V∗ defined as

ν( f ) ..= ( f , ·)

Anti-linear refers to ν(c f ) = c∗ν( f ).

Definition. Hilbert space is a complete inner product
space.

Theorem. The dual space of an inner product space is
complete.

Definition. Absolute pth power | f |p (p ∈ Z+) is a map
from F (X,Y) to F (X, F) where F ∈ {R,C}.

Note. Absolute square of f ∈ F (Rn,C) is defined as
f ∗ · f .

Definition. Lp[E, µ] space is a set of function on measure
space (E,R, µ) satisfyingï∫

E
| f |p dµ

ò 1
p
∈ F

Definition. Inner product of L2[E, µ] is defined as

( f , g) ..=

∫
E

f ∗ · g dµ

6 Differential Geometry
This chapter introduces Differential Geometry which as-
signs differential structure to a topological space. Default
topological space is Hausdorff and second-countable. De-
fault manifold is smooth differential manifold. Default
maps, functions and fields are smooth.

6.1 Differential Manifold
Definition. n-dimensional Coordinate system (U, ψ) of
topological space M is an open set U together with a
homeomorphism ψ :U→V where V is an open set of Rn.

Note. Coordinate system is also phrased chart.
Note. Open set U is the coordinate patch of coordi-

nate system (U, ψ).
Note. For p ∈ U, ψ(p) ∈ Rn is the coordinate of

point p.

Definition. Coordinate transformation between coordi-
nate system (Uα, ψα) and (Uβ, ψβ) satisfying Uα ∩ Uβ is
the map ψβ ◦ ψ−1

α .

Definition. Coordinate system (Uα, ψα) and (Uβ, ψβ) sat-
isfying Uα ∩ Uβ is Ck-compatible if the coordinate trans-
formation in between is Ck, denoted by

(Uα, ψα) k
∼ (Uβ, ψβ)

Definition. Ck-atlas is a set of charts

{(U, ψ)} ..= { (Uα, ψα) | (Uα, ψα) } k
∼ (U, ψ) }

Definition. n-dimensional Ck differential manifold M is
a topological space with a Ck-atlas.

Note. Ck-atlas is a mathematical structure — differ-
ential structure.

Note. Dimension dimM = n.

Definition. Map f between manifolds M and M′ is Ck if
for chart (U, ψ) of M and (U′, ψ′) in M′, map ψ′ ◦ f ◦ ψ−1

is Ck.

Note. Thus, f and ψ′ ◦ f ◦ ψ−1 are not distinguished.

Definition. Diffeomorphism between manifold M and M′

is a bijection f with f and f −1 both smooth.

Note. Manifold M and M′ is diffeomorphic if there
is a diffeomorphism in between.

Definition. Function on M is a map f : M → R.

Note. All smooth functions on M forms a set FM.
Note. Coordinate xi is a smooth function on M.
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6.2 Linear Structure
Definition. Multi-linear map between vector space {Vi}n

and W is a map
f :
∏
i∈Zn

Vi → W

satisfying f (··· vi ···) is linear.

Note. Define the anti-projection map q j from X j to
Cartesian product of {Xi} as

p j(q j(x)) = x, (∀i , j) :: pi(q j(x)) = pi(q j(y))

Then map f on Cartesian product of {Xi} has a restriction
f (··· x j ···) defined as f ◦ q j.

Note. In defining anti-projection map qi, only the ith
variable is considered. Thus, if hold the map qi, it is a bi-
jection Xi to Cartesian product X of {X j}; if assign the ith
variable, qi(xi) can be a point in {y ∈ X | pi(y) = xi }

Definition. Tensor of type (k, l) is a linear map

T :
∏
i∈Zk

V∗i ×
∏
j∈Zl

V j → R

Definition. Tensor of type (k, l) on vector space V is a
linear map

T :
∏
i∈Zk

V∗ ×
∏
j∈Zl

V → R

Note. The set of all tensors of type (k, l) is denoted by
T (k, l). The set of all tensors of type (k, l) on vector space
V is denoted by TV (k, l).

Note. Tensor of type (0, 0) is a scalar T ∈ R.

Definition. Tensor product T ⊗ T ′ of T ∈ TV (k, l) and
T ′ ∈ TW(k′, l′) is a tensor of type (k + k′, l + l′)

T ⊗ T ′(ω, v, ω′, v′) ..= T (ω, v)T ′(ω′, v′)

where

ω ∈
∏
i∈Zk

V∗, v ∈
∏
j∈Zl

V, ω′ ∈
∏
i∈Z′k

W∗, v′ ∈
∏
j∈Z′l

W

Definition. T (k, l) becomes a vector space under addi-
tion and scalar multiplication defined pointwise.

Theorem. dimTV (k, l) = nknl

Proof. The following list is a basis of TV (k, l)

{
⊗
i∈Zk

ei
ai
⊗
⊗
j∈Zl

e∗j
b j }

There are in total nknl elements, and thus the theorem is
proved. �

Now invoke symbol a1 · · · an defined iteratively

a1 · · · an
..= a1 · · · an−1an, a1 = a1

Next, abstract index notation of tensors is introduced.
There are the following symbols for tensors of type (k, l)

T µ1···µk
ν1···νl , T µ1···µi···µk

ν1···ν j···νl , T ···µ······ν···

The first symbol is used for denoting an ordinary tensor
of type (k, l), the second symbol is used in denoting the
action of index i and j

T µ1···µi···µk
ν1···ν j···νlωµiv

ν j ..= T (···ωi ···, ··· v j ···)

where T (···ωi ···, ··· v j ···) is defined as T (qi(ωi), qk+ j(v j))
with qi being the anti-projection map.

The third symbol is used to briefly denote the ordinary
tensors and full actions, i.e.

T ···µ······ν···ωµvν ..= T µ1···µk
ν1···νlω

1
µ1
···ωk

µk
vν1

1 ··· v
νl
1

Definition. Coefficient of tensor T under basis {ea
µ} and

{eνb} is defined as

T ···a······b··· ..= T ···µ······ν···e
a
µeνb

Definition. Contraction Ci
j of tensor T ∈ TV (k, l) is a

map Ci
j : TV (k, l)→ TV (k − 1, l − 1) defined as

Ci
jT

µ1···µk
ν1···νl

..= T µ1···µi···µk
ν1···ν j···νle

a
µi

eν j
a

where ea
µi

and eν j
a are basis.

Theorem. Contraction is irrelevant to the basis selected.

Note. The action of tensor T is equivalent to the com-
posite of tensor product and contraction, thus they are not
distinguished.

Definition. Symmetric part of a tensor is defined as

T···(µ1···µl)···
..=

1
l!

∑
σ∈S n

T···(µσ(1)···µσ(l))···

T ···(µ1···µl)··· ..=
1
l!

∑
σ∈S n

T ···(µσ(1)···µσ(l))···

Note. The above definition defines the symmetry of
index µ1 · · · µl of the tensor.

Note. Tensor T is totally symmetric if it equals the
symmetry of all its indexes.
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Definition. Antisymmetric part of a tensor is defined as

T···[µ1···µl]···
..=

1
l!

∑
σ∈S n

sgn(σ)T···[µσ(1)···µσ(l)]···

T ···[µ1···µl]··· ..=
1
l!

∑
σ∈S n

sgn(σ)T ···[µσ(1)···µσ(l)]···

Note. Tensor T is totally antisymmetric if it equals
the antisymmetry of all its indexes.

Definition. Vector at point p in manifold M is a map
v : FM → R satisfying

(i) Linearity v(α f + βg) = αv( f ) + βv(g)
(ii) Leibniz v( f g) = f |pv(g) + g|pv( f )

where f , g ∈ FM, α, β ∈ R.

Definition. Set of all vectors at p becomes a vector space
TpM under

(i) Addition (v1 + v2)( f ) ..= v1( f ) + v2( f )
(ii) Scalar multiplication (αv)( f ) ..= α(v( f ))

where v1, v2 ∈ TpM, f ∈ FM, α ∈ R.

Lemma. If the restriction of f̂ and f on N ∈ N(p) are
equal, then v ∈ TpM satisfies v( f̂ ) = v( f ).

Note. The above lemma allows vector to act on any
smooth function defined on a subset of M.

Theorem. dim(TpM) = dimM.

Proof. Define list {Xa} of TpM as

Xa( f ) ..=
∂

∂xa f
∣∣∣∣
p

There is

(i) List {Xa} is linearly independent since

κaXa = 0⇒ κaXa(xb) = κa ∂xb

∂xa = κaδb
a = 0

(ii) Any vector v ∈ TpM can be expressed as v = vaXa

with va ∈ R.
According to the mean value theorem, ∀ f ∈ FM,
there is

f (q) = f (p) + [xa|q − xa|p]Ha(q)

where Ha(q) = ∂ f /∂xa[(1 − c)p + cq] with c ∈ R.
Thus

v( f ) =v[ f (p)] + [xa|q − xa|p]|pv(Ha)

+ Ha(q)|pv[xa|q − xa|p]

=v(xa)Ha(p) = v(xa)Xa( f )

Denote v(xa) as va, there is v = vaXa.

(iii) card{Xa} = n.
Thus, the theorem is proved. �

Note. List {Xa} is the coordinate basis of TpM,
Xa ∈ {Xb} is a coordinate basis vector, coefficient vµ is
the coordinate components of vector v.

Definition. Dual vector space T∗p M is the dual space of
TpM.

Note. Dual coordinate basis {dxa} is the dual basis
of coordinate basis.

Definition. Tensor of type (k, l) at point p ∈ M is a tensor
of type (k, l) on vector space TpM.

Note. Set of all tensors of type (k, l) at p is denoted
by Tp(k, l).

Definition. Tensor field (of type (k, l)) on manifold M is a
map T : x 7→ T |x where T |x ∈ Tx(k, l).

Note. Tensor field of type (1, 0) is a vector field; ten-
sor field of type (0, 1) is a dual vector field.

Note. Tensor field is usually overloaded as its image.

Definition. Vector field v is Ck if map v( f ) : x 7→ v|x( f )
with f ∈ F (M,R) is Ck.

Definition. Dual vector field ω is Ck if map ω(v) : x 7→
ω|x(v|x) is Ck, where v is a smooth vector field.

Definition. Tensor field T is Ck if map

T : x 7→ T |x···µ······ν··· (ω|x)µv|νx

is Ck, where ωi and vi are smooth vector field and dual
vector field respectively.

Definition. Ck curve on manifold M is a map C : I → M,
where I is an interval of R.

Note. Parameter of curve C : I → M is t ∈ I.

Definition. Tangent vector of C1 curve C at C(t0) is de-
fined as

T ( f ) ..=
d( f ◦C)

dt

∣∣∣∣
t0

Definition. Integral curve C(t) of vector field v is a curve
satisfying T |C(t) = v|C(t) where T is the tangent vector.

Theorem. There is a unique inextendible integral curve of
smooth vector field passing through point p and satisfying
C(0) = p.

Note. Inextendible refers to

(@C′) :: |C̃′ = C | ∧ |dom(C) ( dom(C′)
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6.3 Metric Structure
Definition. Metric gµν on vector space V is a tensor of
type (0, 2) satisfying

(i) Symmetry gµν = gνµ
(ii) Non-degeneracy (∀uµ∈V) :: gµνuµvν = 0⇒ vν = 0

Note. Metric is a mathematical structure.

Definition. Norm induced by metric gµν is defined as

||v|| ..=
»

gµνvµvν

Definition. Orthonormal basis {eµa} is a basis of V satis-
fying

(i) Orthogonal (∀a , b) :: gµνe
µ
aeνb = 0

(ii) Normal (∀a = b) :: |gµνe
µ
aeνb| = 1

Definition. Signature of metric is defined as

sgn(gµν) ..= tr(gµνeµaeνb)

where {eµa} is the orthonormal basis.

Theorem. Any vector space with metric has an orthonor-
mal basis, and the signature is irrelevant to the basis.

Definition. Metric gµν on M is Positive definite if

sgn(gµν) = dimM

Definition. Metric gµν on M is Lorentzian if

sgn(gµν) = dimM − 2

Definition. In vector space with Lorentzian metric, vec-
tors are divided into

(i) Time-like gµνvµvν < 0
(ii) Space-like gµνvµvν > 0

(iii) Light-like gµνvµvν = 0

Note. Metric can naturally induce a map

gµν : vµ 7→ vν ≡ gµνvµ

Definition. Metric field is a tensor field satisfying

(i) Symmetry gµν = gνµ
(ii) Non-degeneracy gµνuµvν = 0⇒ vν = 0

(iii) Signature sgn(gµν|p) = sgn(gµν|q)

Note. Curve C is time-like, space-like or light-like if
its tangent vector at any point of C is time-like, space-like
or light-like.

Definition. Generalized Riemann space (M, gµν) is a con-
nected manifold M with a metric gµν.

Definition. Spacetime (M, gµν) is a connected manifold M
with a Lorentzian metric gµν.

Definition. Euclidean metric δµν of Rn is defined as

δµν ..= δab dxa
µ dxb

ν

where dxa
µ is the dual coordinate basis.

Definition. n-dimensional Euclidean space is (Rn, δµν).

Definition. Minkowski metric ηµν of Rn is defined as

ηµν ..= −δ0
aδ

0
b dxa

µ dxb
ν + δij dxi

µ dx j
ν

where index i, j ∈ Zn−1.

Definition. n-dimensional Minkowski space is (Rn, ηµν).

Definition. Metric gµν on M can naturally induce a map
g : TxM → T∗x M as

vµ ..= gµνvν

Note. The inverse of gµν is a tensor of type (2, 0) de-
noted by gµν.

Note. This indicates that the metric can be used to ex-
change the indexes, and this operation is set default in the
following context.

6.4 Connection Structure
Note. Smooth tensor field of type (k, l) on M is denoted by
FM(k, l).

Definition. Connection ∂µ on M is a map ∂µ : FM(k, l)→
FM(k, l + 1) satisfying

(i) Linearity (∀T ···µ······ν···, S
···ρ···
···σ··· ∈ FM(k, l)) ::

∂λ(αT ···µ······ν··· + βS ···ρ······σ···) = α∂λT ···µ······ν··· + β∂λS ···ρ······σ···

(ii) Leibniz (∀T ···µ······ν···∈FM(k, l), S ···ρ······σ···∈FM(k′, l′)) ::

∂λ(T ···µ······ν···S
···ρ···
···σ···) = S ···ρ······σ···∂λT ···µ······ν···+T ···µ······ν···∂λS ···ρ······σ···

(iii) Commutative with contraction ∂µ ◦Ci
j = Ci

j ◦ ∂µ
(iv) Relation to vector v( f ) = vµ∂µ f

Note. Connection is a mathematical structure.

Theorem. Any manifold has connections.
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Theorem. For connection ∂̀µ and ∂µ, ∂̀µ f = ∂µ f .

Lemma. If the restriction of T̂ ,T ∈ FM(k, l) on N ∈ N(p)
are equal, then ∂µT̂ = ∂µT .

Definition. Ordinary derivative ∂a is defined as

∂aT ···µ······ν··· ..= ∂aT ···b······c···X
µ
a dxc

ν

Definition. Covariant derivative is a connection that is
irrelevant to the coordinate system.

Note. Ordinary derivative is not a covariant deriva-
tive.

Definition. Connection ∂µ is compatible with metric gµν
if

∂ρgµν = 0

Theorem. There is unique compatible connection on
(M, gµν).

Note. The metric structure and connection structure
on the same manifold is asked to be compatible.

Definition. Torsion tensor Tσ
µν of connection ∂µ is de-

fined by
(∂µ∂ν − ∂ν∂µ) f = Tσ

µν∂σ f

where f ∈ FM.

Note. Connection ∂µ is torsion-free if its torsion ten-
sor Tσ

µν = 0.

Definition. Riemann curvature Rµνρσ of connection ∂µ is
defined by

(∂µ∂ν − ∂ν∂µ)ωρ = Rµνρσωσ

where ωρ ∈ FM(0, 1).

Note. Connection ∂µ is flat if its Riemann curvature
Rµνρσ = 0.

Definition. Ricci tensor Rµν is defined as Rµν ..= Rµρνρ

Definition. Scalar curvature R is defined as R ..= gµνRµν,
where gµν is the inverse of the metric.

Definition. Einstein tensor Gµν is defined as

Gµν
..= Rµν −

1
2

Rgµν

Theorem. Einstein tensor satisfies

∂µGµν = 0

Note. The above property is essential in preserving
the energy conservation law.

6.5 Spacetime Symmetry
This section deals with the map between manifolds with
extra structures.

Pull-back and Push-forward
Condition. Set M, N manifolds, ϕ : M→N smooth map.

Definition. Cotangent map (or pull-back) qϕ :FN→FM

is defined as
qϕ( f )|p ..= f |ϕ(p)

Note. Set of all smooth tensor fields on manifold M
is denoted by FM(k, l).

Note. Overload of a concept is to use the same sym-
bol to represent the extension of the concept.

Definition. Tangent map (or push-forward) dϕ : TpM →
Tϕ(p)N is defined as

dϕ(v)( f ) ..= v(qϕ( f ))

Definition. Pull-back can be extended and overloaded as
qϕ : FN(0, l)→ FM(0, l) with

qϕ(T )...µ···vµ ..= T···µ···dϕ(v)µ

Definition. Push-forward can be extended and over-
loaded as dϕ : Tx(k, 0)→ Tϕ(x)(k, 0) where x ∈ M with

dϕ(T )···µ···ωµ ..= T ···µ···qϕ(ω)µ

Condition. Reset ϕ a diffeomorphism.

Definition. Push-forward of ϕ can be extended and over-
loaded as dϕ : FM(k, l)→ FN(k, l) with

dϕ(T )···µ······ν···ωµvν ..= T ···µ······ν···qϕ(ω)µqϕ(v)ν

where qϕ(v)ν is the overload of d(ϕ−1)(v)ν.

Definition. Pull-back of ϕ can be extended and over-
loaded as the inverse of its push-forward.

Theorem. Pull-back and push-forward are linear map.

Theorem. Pull-back and push-forward is commutative
with tensor product, i.e.

dϕ(TS )···µ···ρ······ν···σ··· = dϕ(T )···µ······ν···dϕ(S )···ρ······σ···

Similar equality holds for pull-back.

Theorem. Pull-back and push-forward is commutative
with contraction, i.e. dϕ ◦ Ci

j = Ci
j ◦ dϕ. Similar equality

holds for pull-back.
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Group of Diffeomorphism
Definition. One-parameter local group of diffeomor-
phism of manifold M is a smooth map ϕ : I × U → M
where I is an open interval with 0 ∈ I and U is an open
subset of M satisfying

(i) (∀t ∈ I) ::ϕt :U→ img(ϕ)[U] is a diffeomorphism.
(ii) (∀t, s, t + s ∈ I) ::ϕt ◦ ϕs = ϕt+s

where ϕt(p) ..= ϕ(t, p).

Definition. One-parameter group of diffeomorphism is
a one-parameter local group of diffeomorphism satisfying
I = R and U = M.

Definition. Orbit of the one-parameter group of diffeo-
morphism ϕp is defined as ϕp(t) = ϕ(p, t) and ϕp(0) = p.

Theorem. One-parameter group of diffeomorphism ϕ can
induce a smooth vector field v with v|p being the tangent
vector of ϕp at t = 0.

Theorem. Smooth vector field v can induce a one-
parameter local group of diffeomorphism ϕ with ϕt(p) and
p at the same integral curve of v and differ t in parameter.

Definition. Vector field is complete if the domain of all its
integral curves is R.

Theorem. Smooth complete vector field can induce a one-
parameter group of diffeomorphism.

Lie Derivative
Definition. Lie derivative of tensor field T ···µ······ν··· along vec-
tor field v is defined as

LvT ···µ······ν··· ..= lim
t→0

1
t

[dϕt(T )···µ······ν··· − T ···µ······ν···]

where ϕ is the one-parameter local group of diffeomor-
phism induced by vector field v.

Theorem. Lv f = vµ∂µ f

Definition. Isometry of generalized Riemann space
(M, gµν) is a diffeomorphism ϕ : M → M satisfying

qϕ(g)µν = gµν

Definition. Killing field ξ is a vector field satisfying

Lξgµν = 0

Theorem. Killing field satisfies the following Killing
equations

∂µξν + ∂νξµ = 0

Immersion and Embedding
Definition. Immersion ϕ : S → M is a smooth injection
satisfying

(i) dimS 6 dimM
(ii) (∀p ∈ S , v ∈ TpS ) :: dϕ(v) = 0⇒ v = 0

Note. Map ϕ : S → img(ϕ)[S ] can be naturally de-
fined as a diffeomorphism, where ϕ is an immersion.

Definition. Immersed submanifold is the image of the im-
mersion.

Definition. Topological embedding is an immersion ϕ

with map ϕ : S → img(ϕ)[S ] being homeomorphic.

Definition. Embedded submanifold (or regular subman-
ifold) is an immersed manifold with immersion being topo-
logical embedding.

Definition. Hypersurface S is an immersed submanifold
satisfying dimS = dimM − 1

Definition. Vector v at q is tangent to hypersurface ϕ[S ]
if it is the tangent vector of a curve of ϕ[S ].

Definition. Normal covector nµ at q is a dual vector in
T∗qϕ[S ] satisfying (∀wµ ∈ Tqϕ[S ]) :: wµnµ = 0

Theorem. Any covector wµ and uµ satisfies wµ = huµ
where h ∈ R.

Definition. Normal vector nµ of hypersurface ϕ[S ] in gen-
eralized Riemann space (M, gµν) is defined as nµ = gµνnµ.

Definition. Hypersurface is

(i) Time-like if nµnµ > 0
(ii) Space-like if nµnµ < 0

(iii) Light-like if nµnµ = 0

Note. If normal vector satisfies nµnµ , 0, there is a
normalized normal vector such that |nµnµ , 0| = 1. In the
following context, default normal vector is normalized if
possible.

Definition. Induced metric hµν at q of hypersurface ϕ[S ]
of (M, gµν) is a metric on ϕ[S ] satisfying

(∀wµ, uν ∈ Tqϕ[S ]) :: hµνwµuν = gµνwµuµ

Definition. For time-like and space-like hypersurface, in-
duced metric is extended and overloaded as

hµν = gµν + (−1)snµnν

where s = nµnµ and nµ is the normal vector.
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6.6 Measure Structure
This section concerns the differential form and integration
on manifolds. Default l-form is overloaded as differential
l-form field. Default measure is adapted measure.

Differential Form
Definition. l-form of vector space V is a totally antisym-
metric tensor of type (0, l) on V .

Note. All l-form on V is denoted by Λ(l).

Definition. Wedge product of l-form ω and m-form η is a
l + m-form defined as

(ω ∧ η)···µ···ν··· ..=
(l + m)!

l!m!
ω[···µ···η···ν··· ]

Theorem. If dimV =, then Λ(l) = {0} for l > n.

Note. Thus, only l 6 n case is considered.

Theorem. If dimV = n, then dimΛ(l) = n!/(l!(n − l!)).

Proof. Set {ea} a dual basis of TV (0, l). Notice that

{
∧
i∈Zl

eai
i } with

∧
i∈Zm

ωi =
∧

i∈Zm−1

ωi ∧ ωm,
∧
i∈Z1

ωi = ω1

where {ai} is a permutation of Zn and ai < a j if i < j is a
basis of Λ(l). There are in total n!/(l!(n − l)!) elements in
the basis, and hence the theorem is proved. �

Definition. l-form field on manifold M is a totally sym-
metric tensor field of type (0, l) on M.

Definition. Differential l-form field is a smooth l-form
field.

Exterior Derivative
Definition. Exterior derivative is a map d :Λ(l)→Λ(l+1)
defined as

dωµ···ν··· = (l + 1) ∂[µω···ν··· ]

where ∂µ is any connection.

Note. For f ∈ Λ(0), there is d fµ = ∂µ f .

Theorem. d ◦ d = 0

Definition. l-form ω is closed if dω = 0.

Definition. l-form ω is exact if (∃η∈Λ(l−1) ::ω = dη.

Theorem. If l-form ω is exact, then it is closed.

Note. The inverse predicate does not always hold.

Measure and Integration
Definition. n-dimensional manifold is orientable if there
is a continuous non-zero n-form.

Definition. Equivalence relation of orientation ∼ on
manifold M is defined as

ε ∼ ε′ ⇔ (∃h ∈ F (M,R+)) :: ε = hε′

where ε and ε′ is a continuous non-zero n-form.

Definition. Orientation of n-dimensional orientable man-
ifold is the element of {ε}/∼ where ε is a continuous non-
zero n-form.

Note. Orientation is a mathematical structure.
Note. Manifold M is oriented if there is a orientation

defined.

Definition. Basis {eµa} on open set O in oriented manifold
M is right-handed if

(∃h > 0) :: ε = h
∧
i∈Zn

ei

where ε is the orientation and {ei
µ} is the dual basis of basis

{eµa}.

Definition. Basis {eµa} on open set O in oriented manifold
M is left-handed if it is not right-handed.

Definition. Coordinate system (O, ψ) is right-handed
(resp left-handed) if its coordinate basis is right-handed
(resp left-handed).

Definition. Integral of continuous n-form ω on open set
G is defined as ∫

G
ω ..=

∫
ψ[G]

ω(x) dµ

where (O, ψ) is a coordinate system with G ⊂ O, ω(x) is
the coefficient of ω under coordinate dual basis and µ is
the usual measure.

Definition. Measure of n-dimensional orientable mani-
fold M is a continuous non-zero n-form.

Definition. Adapted measure of n-dimensional orientable
generalized Riemann space (M, gµν) is a continuous non-
zero n-form ε satisfying

gµνε···µ···ε···ν··· = (−1)sn!

where s is half of the signature of the metric.
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Definition. Integral of continuous function f on G in
(M, gµν) is defined as∫

G
f dµ ..=

∫
G

f ε

7 Lie Group & Lie Algebra
This chapter elucidates Lie group and Lie algebra theory.

7.1 Lie Group
Definition. n-dimensional Lie group is a set that is both
a manifold and a group satisfying

(i) Group multiplication · : g · h 7→ gh is smooth.
(ii) Inversion map −1 : g 7→ g−1 is smooth.

Definition. Subgroup H of group G is a subset of G closed
under group multiplication.

Definition. Homomorphism µ of group G and G′ is a map
µ : G → G′ satisfying

(∀g, h ∈ G) :: µ(gh) = µ(g)µ(h)

Note. The next two definitions are overloaded.

Definition. Isomorphism is a bijective homomorphism.

Definition. Automorphism is a homomorphism µ :G→G.

Definition. Direct product group G × G′ is a group with
multiplication defined as

(g, h) · (g′, h′) ..= (gg′, hh′)

Definition. Lie group homomorphism is a smooth homo-
morphism between Lie groups.

Definition. Lie group isomorphism is a diffeomorphic ho-
momorphism.

Definition. Lie subgroup H of Lie group G is a subset of
G being both the subgroup and immersed submanifold of
G.

Definition. Left translation generated by g ∈ G is a map
Lg defined as

Lg : h 7→ gh

Definition. Vector field X̄ on Lie group is left-invariant if

dLg(X̄) = X̄

Theorem. The set of all left-invariant vector field L(G) of
Lie group G becomes a vector space under addition and
scalar multiplication defined pointwise.

Theorem. Vector space TeG is isomorphic to L(G).

7.2 Lie Algebra
Definition. Lie bracket on vector space V is a map [, ] :
V × V → V satisfying

(i) Bilinearity (∀u, v,w ∈ V, α, β ∈ R)

[αu + βv,w] = α[u,w] + β[v,w]

[u, αv + βw] = α[u, v] + β[u,w]

(ii) Anticommutativity

(∀u, v ∈ V) :: [u, v] = −[v, u]

(iii) Jacobi identity

(∀u, v,w∈V)::[u, [v,w]]+[w, [u, v]]+[v, [w, u]]=0

Definition. Lie algebra is a vector space G with Lie
bracket defined.

Theorem. L(G) becomes a Lie algebra under

(∀X̄, Ȳ ∈ L(G)) :: [X̄, Ȳ] ..= X̄ ◦ Ȳ − Ȳ ◦ X̄

Definition. Lie algebra homomorphism β : V → W is a
linear map satisfying

(∀u, v ∈ V ) :: β([u, v]) = [β(u), β(v)]

Definition. Lie subalgebra is a subset of Lie algebra
closed under the Lie bracket.

Definition. Left-invariant vector field X̄ of Lie group G
corresponding to vector X ∈ TeG is defined as

X̄|g ..= dLgX

Definition. Lie algebra G of Lie group G is the vector
space TeG with Lie bracket defined as

[X,Y] ..= [X̄, Ȳ]|e

Definition. Generator of Lie group G is a basis of corre-
sponding Lie algebra.

Theorem. If ρ : G → Ĝ is a Lie group homomorphism,
then dρ|e : G → Ĝ is a Lie algebra homomorphism.

Theorem. If H is the Lie subgroup of G, then H is the
Lie subalgebra of G .
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7.3 Exponential Map
Definition. Homomorphic line is a smooth map γ :R→G
satisfying

γ(s + t) = γ(s)γ(t)

Theorem. There is a natural bijection between homomor-
phic line and the integration curve of left-invariant vector
field.

Definition. Exponential map exp : TeG → G of Lie
group G is defined as

exp(X) ..= γ(1)

where γ is the corresponding homomorphic line of X̄.

Theorem. (∀s∈R, X∈TeG) :: exp(sX) = γ(s)

Note. Thus, exp(sX) is utilized to denote a homomor-
phic line.

7.4 Representation Theory
Definition. Lie group of transformation of G on manifold
M is a smooth map σ : G × M → M satisfying

(i) (∀g ∈ G) ::σg : M → M is a diffeomorphism.
(ii) (∀g, h ∈ G) ::σgh = σg ◦ σh

where σg(x) ..= σ(g, x).

Definition. Realization of Lie group G on manifold M is
a homomorphism

ρ : g 7→ σg

Definition. Realization space is the manifold M in the
above definition.

Definition. Realization is faithful if it is a isomorphism.

Definition. Representation ρ of Lie group G on manifold
M is a realization of Lie group G on manifold M with M
being a vector space.

Note. Representation is sometimes overloaded as its
image.

Definition. Representation space is the realization space
of representation.

Definition. Representation is faithful if it is a isomor-
phism.

7.5 Matrix Groups
This section illustrates several specific matrix groups.

General Linear Group
Definition. General linear group GL(m,F) of degree m
is the set of all invertible endomorphism of m-dimensional
vector space V over field F ∈ {R,C} with map composition
as group multiplication.

Definition. Special linear group SL(n,F) is a subgroup of
GL(n,F) satisfying (∀X ∈ SL(n,F)) :: det(X) = 1 where the
determinant of X is the determinant of matrix of X under
any basis.

Note. The above definition is valid since the determi-
nant of linear map is unique.

Theorem. Lie algebra GL (m,F) of GL(m,F) is the set of
all square matrix of order n of field F.

Theorem. dimGL(n,F) = dimGL (n,F) = n2

Definition. Exponential function Exp of square matrix X
of order m is defined as

Exp(X) ..= I +
∑
i∈Z+

1
i!

Xi

where I is the identity matrix and Ai = AAi−1, A1 = A.

Theorem. (∀X ∈ GL (m,F)) :: exp(X) = Exp(X)

Definition. Matrix group refers to general linear group
and all its subgroups.

Theorem. The Lie bracket of matrix group is

(∀X,Y ∈ GL (m,F)) ::[X,Y] = XY − YX

Orthogonal Group
Definition. Endomorphism Zµν of vector space V with met-
ric gµν is metric-preserved if

gµνZµρZνσ = gρσ

Definition. Orthogonal Group O(m) is a subgroup of
GL(m,F) on vector space V with positive definite metric
gµν and all elements being metric-preserved.

Definition. Special orthogonal group SO(m) is a sub-
group of O(m) satisfying (∀Z ∈ SO(m)) :: det(Z) = 1.

Theorem. Lie algebra O(m) of O(m) is the set of square
matrix X of order n satisfying tsp(X) = −X.

Theorem. dimO(m) = dimO(m) = m(m − 1)/2
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Lorentz Group

Definition. Lorentz Group L(1, n− 1) is a subgroup of
GL(n, F) on vector space V with Lorentzian metric gµν and
all elements being metric-preserved.

Definition. Proper Lorentz group L↑+ is a subgroup of
L(1, n−1) satisfying (∀Λ ∈ L↑+) :: det(Λ) = 1.

Theorem. The proper Lorentz group is connected.

Theorem. Lie algebra L (1, n−1) of Lorentz group is the
set of square matrix Λ of order n satisfying tsp(Λ) = −ηΛη

where ηb
a

..= −δ0
aδ

b
0 + δ

j
i δ

i
aδ

b
j .

Note. Matrix ηb
a defined above is phrased Minkowski

matrix.

Theorem. dimL(1, n−1) = dimL↑+ + 1 = n

Unitary Group

Definition. Unitary operator on inner product space V is
an endomorphism of V satisfying

(∀ f , g ∈ V) ::(Uf ,Ug) = ( f , g)

Definition. Adjoint operator of endomorphism U on inner
product space V is an endomorphism U† satisfying

(∀ f , g ∈ V) ::(U† f , g) = ( f ,Ug)

Theorem. Unitary operator satisfies U†U = idV .

Definition. Unitary matrix U is a complex square matrix
satisfying tsp(Ū)U = U†U = I.

Definition. Unitary group U(m) is the set of all unitary
operator on m-dimensional inner product space with map
composition as group multiplication.

Theorem. Unitary group is compact and connected.

Definition. Complex square matrix U is hermitian (resp
anti-hermitian) if U† = U (resp U† = −U).

Theorem. For matrix U, det(Exp(U)) = exp(tr(U)).

Theorem. Lie algebra U (m) of unitary group U(m) is the
set of complex anti-hermitian matrix of order m.

Definition. Special unitary group SU(m) is a subgroup of
U(m) satisfying (∀U ∈ SU(m)) :: trU = 0 where the trace
of U is the trace of matrix of U under any basis.

Theorem. dimU(m) = dimU (m) = m2

8 Fibre Bundle

This chapter elaborates the fibre bundle theory.

8.1 Principal Bundle

Definition. Left action of Lie group G on manifold K is a
smooth map L : G × K → K satisfying

(i) Lg : K → K is a diffeomorphism.
(ii) Lgh = Lg ◦ Lh

where (∀p ∈ K) :: Lg(p) = L(g, p).

Definition. Right action of Lie group G on manifold K is
a smooth map L : K ×G → K satisfying

(i) Rg : K → K is a diffeomorphism.
(ii) Rgh = Lh ◦ Lg

where (∀p ∈ K) :: Rg(p) = Rp(g) = R(p, g).

Note. Now, denote the left action Lg(p) as gp and
right action Rg(p) as pg.

Definition. Right action is free if g , e⇒ pg , p.

Definition. Principle fibre bundle P(M,G) (or principle
bundle) consists of a bundle manifold P, base manifold
M and structure group G with

(i) Free right action R : P ×G → P.
(ii) Projection map % : P→ M satisfying

(∀p ∈ P) :: %−1[%(p)] = { pg | g ∈ G }

(iii) Local trivialization TU : %−1[U]→ U×G for every
x ∈ M and U ∈ N(x) as

(∀p ∈ P) :: TU(p) = (%(p), SU(p))

with map SU : %−1[U]→ G satisfying

(∀g ∈ G) :: SU(pg) = SU(p)g

Definition. Fibre of P over x ∈ M is the set %−1[{x}].

Definition. Characteristic point p̃ of %−1[x] is a point sat-
isfying SU( p̃) = e.

Note. Symbol %−1[x] refers to %−1[{x}].
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Definition. Transition function gUV from local trivializa-
tion TU to TV is defined as

gUV (x) = SU(p)SV (p)−1

where x = %(p).

Definition. Local cross section σ(x) on open set U in
principal bundle P(M,G) is a smooth map σ : U → P
satisfying

(∀x ∈ U) :: %(σ(x)) = x

Theorem. There is an injection between local trivializa-
tion and local cross section.

Note. The set of all basis of vector space V is denoted
by basisV .

Definition. Frame bundle FM of manifold M is con-
structed as

(i) Bundle set

P = { (x, {eµa} | x ∈ M, eµa ∈ basisTxM }

(ii) Bundle manifold (differential structure of bundle
set) (Ô, ψ̂) as

Ô ..= { (x, eµa) | x ∈ O, eµa ∈ basisTxM }

ψ̂(x, eµa) ..= (ψ(x), eb
a)

where (O, ψ) is a chart of M, (x, eµa) refers to
(x, {eµa}), and eb

a is the coordinate component of
the basis.

(iii) Structure group G = GL(dimM,R).
(iv) Right action

Rg(x, eµa) ..= (x, eµaga
b)

(v) Projection map

%(x, eµa) ..= x

(vi) Local Trivialization

TU(x, eµa) = (x, h)

and h = SU(x, eµa) satisfies Xµ
a ha

b = eµb where {Xµ
a }

is the coordinate basis of chart (O, ψ) with U ⊂ O.

Note. Construct can refer to define.

Definition. Orthogonal frame bundle of spacetime
(M, gµν) is a frame bundle with basis being orthonormal
and structure group being Lorentz group.

Note. Default frame bundle of spacetime is orthogo-
nal frame bundle.

Definition. Vertical subspace Vp is a subspace of TpP de-
fined as

Vp
..= {X ∈ TpP | d%(X) = 0}

Definition. Vertical vector is the element of vertical space.

Definition. Fundamental vector field X̃ induced by X ∈ G

of principal bundle P(M,G) is defined as

(∀p ∈ P) :: X̃|p ..= dRp(X)

8.2 Associated Bundle
Definition. Product manifold M × N of manifold M and
N is a set M × N with product topology and differential
structure (O, ψ) defined as

(∀(m, n) ∈ O) ::ψ(m, n) ..= (ϕ(m), φ(n))

where (U, ϕ) is a chart of M and (V, φ) is a chart of N.

Definition. Associated bundle Q = P × F/∼ of principal
bundle P(M,G) consists of a typical fibre manifold F and
left action of G on F with

(i) Bundle set Q = P × F/∼ where equivalence rela-
tion is defined as

(∀(p, f ) ∈ P × F) :: (p, f ) ≡ p · f ∼ pg · g−1 f

(ii) Projection map

(∀q ≡ p · f ∈ Q) :: %̃(q) ..= %(p)

(iii) Local trivialization

(∀q ∈ %̃−1[U]) :: T̃U(q) ..= (%̃(q), f̃ )

where q ≡ p̃ · f̃ with p̃ being the characteristic
point of local trivialization of principal bundle.

(iv) Bundle manifold (differential structure of bundle
set) (Ô, ψ̂) as

ψ̂ ..= ψ ◦ T̃U

where (O, ψ) is a chart of U × F.

Definition. Local cross section σ̃(x) on open set U in as-
sociated bundle Q is a smooth map σ̃ : U → Q satisfying

(∀x ∈ U) :: %̃(σ(x)) = x

Note. Default cross section is local cross section.

Definition. Fibre of Q over x ∈ M is the set %̃−1[{x}].
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8.3 Physical Field
Definition. Gamma matrices are a set of matrices {γc}

satisfying
γaγb + γbγa = −2ηabI

where ηab is the Minkowski matrix and I is the identity ma-
trix.

Definition. Hermiticity condition is defined as

(γa)† = γ0γaγ0

Note. Default gamma matrices are chosen to satisfy
hermiticity condition.

Note. Define γµ as γµ ..= γaε
a
µ where γa ≡ ηabγ

b and
{εa
µ} is the dual basis field on some manifold.

Note. Define σµν as

σµν ..=
1
2

i[γµ, γν]

where [γµ, γν] ..= εa
µ[γa, γb]εb

ν.
Note. Define Sµν as

εµcε
ν
d(Sµν)a

b
..= −iδa

cηbd + iδa
dηbc

Definition. Spin-zero field ϕ is a cross section of associ-
ated bundle FM×C/∼ of spacetime frame bundle with left
action defined as

(∀ f ∈ C, g ∈ L) :: g−1 f ..= f

Definition. Spin-half field ψ is a cross section of asso-
ciated bundle FM×V / ∼ of spacetime frame bundle with
inner product space V satisfying dimV = dimM and left
action defined as

(∀ fa∈V, g≡exp{−
1
2

iτµνSµν}) :: g−1fa ..=exp{
1
4

iτµνσµν}ba fb

where τµν ≡ τabε
µ
aενb with τab being the constant coordi-

nates of g, and the inner product is defined as

( f , g) ..= f̄ a(γ0)a
bgb

where f̄ a ≡ ηab f̄b and f̄b refers to complex conjugate.

Definition. Spin-one field ω is a cross section of associ-
ated bundle FM × Λ/ ∼ of spacetime frame bundle with
inner product space Λ satisfying dimΛ = dimM and left
action defined as

(∀ fa∈Λ, g≡exp{−
1
2

iτµνSµν}) :: g−1fa ..=exp{
1
2

iτµνSµν}ba fb

And the inner product is defined as ( f , g) ..= ηab f agb.

Definition. Physical field refers to spin-zero, spin-half
and spin-one field.

Note. The binary operation ϕ (addition and scalar
multiplication) of elements q ≡ p · f and r ≡ p · g in
fibre of associated bundle is defined as

qϕr ..= p · ( fϕg)

Note. The binary operation (addition and scalar mul-
tiplication) of spin-zero, spin-half and spin-one field is de-
fined pointwise.

Note. The set of all spin-zero, spin-half and spin-one
field become vector spaces under the above binary opera-
tion respectively.

Definition. Field representation is the left action on the
physical field.

Definition. Conjugate spin-half field ψ̄ of spin-half field
ψ is the natural dual of ψ induced by the inner product
pointwise.

Theorem. There is a natural isomorphism between the
space of all real spin-one field and the space of 1-form.

8.4 Connection on Bundle
Definition. V -valued tensor field T with V being a vec-
tor space is defined as T ..= Tv ≡ T ⊗v where T is a tensor
field and v ∈ V is a vector.

Definition. Adjoint isomorphism Ig of group G induced
by g ∈ G is defined as

(∀h ∈ G) :: Ig(h) ..= g−1hg

Definition. Connection $ of principal bundle P(M,G) is
a G -valued spin-one field satisfying

(i) (∀h ∈ G ) ::$µ|ph̃µ|p = h
(ii) (∀X∈TpP, g∈G) ::$µ|pgdRg(X)µ= dIg($µ|pXµ)

Note. Map f , g between vector spaces with domain
being V and W respectively can be extended to v ⊗ w as

f (v ⊗ w) ..= f (v) ⊗ w, g(v ⊗ w) ..= v ⊗ g(w)

where v ∈ V and w ∈ W. Furthermore, map f and g can
be defined pointwise for tensor fields.

Note. The above extension is automatically applied
in the following context.
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Definition. Connection ω on U of local trivialization TU

is defined as ω ..= qσ($) where σ is the corresponding
local cross section.

Theorem. The connections of local trivialization TU and
TU′ satisfy

(∀x∈U∩U′, X∈TxM) ::ω′µXµ= dIg(ωµXµ)+dL−1
g ◦dg(X)

where g is the transition function from TU to TU′ . And for
structure group G being matrix group, the relation simpli-
fies to

ω′ = g−1ωg + g−1dg

where the product of matrix group element g and Lie alge-
bra g is defined as composite of corresponding linear map.
And exterior derivative dg is defined as

dg ..= dgrer

where {er} is a basis of Lie algebra G .

Definition. Covariant derivative Dµ of physical field σ̃ is
defined as

Dµσ̃ ..= σ · [∂µ f + dρ(ω)µ f ]

where σ is a cross section of frame bundle and ρ is the
representation of structure group on typical fibre.

8.5 Curvature of Connection
Definition. Graded wedge product of G -valued n-form ηg
and λh is defined as

[ηg∧λh] ..= (η∧λ) [g ,h]

Definition. Exterior covariant derivative D of G -valued
n-form η is defined as

Dη ..= dη +
1
2

[$∧η]

Definition. Curvature ‹Ω of connection $ is defined as‹Ω ..= D$ ≡ d$+
1
2

[$∧$]

Definition. Curvature Ω on U of local trivialization TU is
defined as Ω ..= qσ(‹Ω) where σ is the corresponding local
cross section.

Theorem. For matrix structure group, there is‹Ω = d$ +$∧$

Note. The curvature of connection of frame bundle
coincides with the Riemann curvature.

9 Gauge Field Theory
This chapter constructs the foundations of Physics and the
classical gauge field theory.

9.1 Background Setup
The background elements of gauge field theory are

constructed as follows

Topological space M with

Separation Hausdorff
Countability Second-countable
Connectedness Connected

Base manifold M with

Dimension n or 4
Differentiability Smooth
Orientability Orientable

Structure Group G with

Element Matrix group
Differentiability Lie group
Representation ρ Faithful

and space V Inner product space

Principal bundle P = M ×G with

Right action (x, g)h ..= (x, gh)
Projection Natural projection
Trivialization Identity map

Typical fibre F with

Algebra Banach space
Differentiability Smooth

Associated bundle Q = P×F/∼ with

Left action Representation

Structure [P(M,G),Q] forms the background of gauge
field theory.

9.2 Field Construction
Definition. Matter field σ̂ is the cross section of Q with
fibre over x constructed as σ̃(x) · v ≡ σ̃(x)⊗ v where v ∈ V
and σ̃ is a spin-zero or spin-half field.

Definition. Gauge field ω is a connection of P(M,G).
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9.3 Symmetric Principle
Definition. Action I[ψ, ∂µ] is a real continuous functional
of physical fields.

Note. Physical field is now overloaded as matter field
and gauge field.

Definition. Functional H[ψ, ∂µψ] is local if

H|p = H[ψ|p, ∂µψ|p]

Definition. Lagrangian L[ψ, ∂µψ] is a local continuous
functional of physical fields.

Locality Condition. The action has the formulation

I =

∫
εL

where the integration is on arbitrary open set of base man-
ifold.

Definition. Inner product of matter field σ̂ ≡ σ̃ · v is de-
fined as

〈σ̂, σ̂〉 ..=

∫
ε(x) (σ̃(x), σ̃(x)) · (v, v)

where the integration is on the same open set as the action.

Definition. Inner product of gauge field ω ≡ ηg is defined
as

〈ω,ω〉 ..=

∫
ε (η, η) · tr(g )

where the integration is on the same open set as the action.

Theorem. The set of matter field or gauge field becomes
a Banach space under the induced norm of inner product
defined above.

Definition. Interior variation operator ıδ is defined as

ıδH[ψ] = lim
i→∞

δHi[ψ]

where H is a functional and the corresponding variation
on ψ is

ıδψ = lim
i→∞

ϕi, ϕi

∣∣∣
∂U

= 0

where U is the same open set as the action.

Symmetric Principle. The Symmetric Principle is formu-
lated as

ıδI = 0

where I is the action and ıδ is the internal variation.

Theorem. The symmetric principle infers the following
equation of motion

∂L
∂ψ
− ∂µ

∂L
∂∂µψ

= 0

9.4 First Quantization
First Quantization is to construct the Lagrangian of spin-
zero matter field ϕ as

L = −Dµϕ†Dµϕ − m2ϕ†ϕ

free spin-half matter field as

L = −iψ̄γµ∂µψ − mψ̄ψ

free spin-one gauge field as

L = −
1
4

trΩµνΩ
µν

interaction of spin-half and spin-one field as

L = −ψ̄γµωµψ

9.5 Conserved Charge
Definition. Action I[ψ, ∂µψ] is invariant under transfor-
mation Lξ if

LξI =

∫
∂µ`

µε

Noether’s Theorem. Every continuous symmetry in a the-
ory Lξψ corresponds to a conserved current

J µ =
∂L
∂∂µψ

Lξψ − `µ

This is the end of the document.
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